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ABSTRACT

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine 
implicated in acute and chronic disease, including autoimmune  disease, 
atherogenesis, plaque instability, sepsis, glomerulonephritis, acute kidney 
injury and CKD.  Macrophage migration inhibitory factor (MIF) has emerged as 
a promising therapeutic target in human diseases including immune disorder, 
cancer, cardiologic diseases, diabetes, and inflammatory diseases. MIF was also 
reported contributes to leukocyte infiltration, histological damage and renal 
function impairment in multiple kidney diseases. MIF was considered to be the 
early prediction of tissue rejection in experimental and clinical transplantation. 
MIF is increased in many kidney diseases as: acute kidney injury, lipid-induced 
glomerular injury, rat crescentic glomerulonephritis, anti-GBM diseases, etc. MIF in 
plasma and urine is significantly elevated in patients with acute  kidney  injury 
(AKI) and elevated MIF in serum is associated with renal function and injury, it 
represents as a biomarker for renal replacement therapy after AKI. This review 
provides a brief concept of MIF signaling pathway and functional role of MIF in 
different kidney disease especially AKI.
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EXPRESSION PATTERN OF MIF 

Expression of MIF

Macrophage migration inhibitory factor (MIF) was first discovered by Barry 
Bloom and Boyce Bennett in 1970. They observed a protein from the supernatant 
of antigen-sensitized lymphocytes could inhibit the migration of macrophages 
and peritoneal cells [1]. Human MIF cDNA clone and recombinant MIF became 
available and thus facilitated the analysis of the role of this lymphokine in cell-
mediated immunity, immunoregulation, and inflammation over decades [2]. 

MIF expression has been started at the beginning of life. MIF expression has 
been detected in multiple tissues and different cell types during organogenesis. 
MIF mRNA expression was detected in somites, precartilage primordia in ribs 
and vertebrae, branchial arches, limb buds, neural tissues, all muscle cell types 
and during organogenesis, lung, liver, kidney, testis, spleen, skin, adrenal gland, 
intestine, adrenal gland and pancreas [3-6]. All tissues express MIF at baseline 
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levels, and it is significantly upregulated under stimulations 
such as sepsis, stress, or diseased condition. Onset of MIF 
expression coincides with the specification of tissues, it 
was observed during myogenesis in all muscle cell types, 
including cardiac, smooth, and skeletal muscle, during 
embryonic development [6]. 

Secretory MIF protein can be detected constitutively in 
serum and plasma. Historically, MIF was first thought to be 
produced by activated T-lymphocytes thus considered as a 
lymphokine, but immunohistochemical analysis of various 
tissues indicates MIF was also been shown to be secreted 
from the anterior pituitary gland, monocytes/macrophages, 
and T and B lymphocytes, NK-cells, basophiles/mast cells and 
eosinophils activated by various proinflammatory stimuli 
[7]. MIF was found to be expressed constitutively in anterior 
pituitary gland, the adrenal cortex, the Leydig-cells of the 
testis, the epithelial cells of the epididymis and pancreatic 
β- cells. Other MIF synthesizing cells are vascular smooth 
muscle, cardiomyocytes and skeletal muscle cells [8], gastric 
parietal cells [9], keratinocytes and fibroblasts [10], hepatocytes 
and peripheral and central neurons [4]. 

Renal MIF is constitutively produced under normal 
circumstances but significantly upregulated in the kidney-
infiltrating T cells, macrophages and various non-immune cells 
including tubular and glomerular epithelial cells, mesangial 
cells, endothelial cells, fibroblasts and vascular smooth 
muscle cells under diseased conditions. Renal MIF is released 
and exerts its biological activities in many pathological 
conditions such as septic shock, renal inflammation, immune 
injury and diabetes. 

Regulation of MIF secretion

MIF is normally released at a low rate and in large amounts 
after stimulation from leukocytes, immune cells and released 
by injured cells or dead cells. MIF exists in cytoplasm and 
release directly after stimulation, which is independent to 
the endoplasmic reticulum and the Golgi, so, no synthesis 
is necessary before its release [11,12]. Furthermore, MIF 
expression may increase after conditions of stimulation as 
stress, sepsis and hypoxia [13]. Thus, in the MIF secretion 
curve there are two peaks, the first one is formed by MIF 
releasing from the cytoplasm stores which is the fast and 
high peak, and then follows the second peak consequent to 
new MIF synthesis which is the slow and flat peak. 

MIF SIGNALING PATHWAY

The receptors of MIF

CD74 is identified as the first and main receptor of MIF [14] 
and it is an invariant MHC class II cell membrane with high-
affinity receptor for bacterial proteins and d-dopachrome 
tautomerase (d-DT/MIF) [15]. The signals of MIF-CD74 
transducing to downstream depends on another receptor 
CD44, which is a co-receptor of MIF and can interacts with 
downstream signals as PI3K-Akt,  NFκB signaling, etc. CD74 
participates in several key processes of the immune system, 
such as antigen presentation, B-cell differentiation, and 
inflammatory signaling [16]. MIF and CD74 complex has been 
shown to regulate peripheral B cell survival. The activation of 
CD74 also leads to the recruitment of T cells and monocytes, 
dendritic cell (DC) motility, macrophage inflammation, and 
thyme selection. CD74 expression was suggested to be as a 
prognostic factor in many cancers and was suggested to be a 
predictor of tumor progression [17]. CD74 is a new candidate for 
immunotherapy of neoplasms, which can be exploited using 
either a naive anti-CD74 antibody as well as with conjugates 
including isotopes, drugs, or toxins [18]. CD74 also participates 
in many human diseases such as inflammatory disease, liver 
fibrosis, type I diabetes, systemic lupus erythematosus, and 
Alzheimer disease [19, 20].

Importantly, MIF interacts with extracellular domain of 
CD74 requires the phosphorylation and the recruitment of 
CD44 which is a genetically polymorphic molecule with an 
important role in cell-extracellular matrix interaction to form 
a MIF/CD74/CD44 complex. It was reported that CD44 play a 
role in MIF-induced ERK phosphorylation [21]. Study revealed 
that CD44 deletion partly blocked the inflammatory responses 
and reduced renal inflammation and injury [22].

Other MIF receptors have been described are the CXC 
chemokine receptors CXCR2 and CXCR4 which have a relevant 
role mainly in inflammatory diseases [23]. MIF promotes 
macrophages and T cells recruit to the inflamed area through 
binding to CXCR2 and CXCR4. It is also reported that CXCR2 
binds to CD74 to form a CD74/CD44/CXCR2 complex which 
transduce signals downstream. 

MIF signaling pathway

MIF has extracellular and intracellular signaling pathways. 
In extracellular pathway, MIF binds to the extracellular 
ligands of CD74 which interacts with CD44 to form a complex, 
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than transduce signals to downstream signaling as MAP 
kinase to stimulate cell proliferation. In addition, MIF also 
can indirectly activate NF-κB signaling through a signaling 
cascade including Src kinase, Akt, Syk, which consequently 
promotes B lymphocytes proliferation and survival. All 
this signal activation requires CD74 and CD44 receptors 
participating and this receptors complex is also required in 
MIF-mediated anti-apoptotic effects. Moreover, MIF binding 
to its receptor may also due to the activation of ERK1/2-MAPK, 
JAB1-CSN5, or PI3K-Akt pathways, the inhibition of p53, and 
the stimulation of antigenic factors including IL-8 and VEGF. 
In addition, overexpression of MIF also suppresses anti-tumor 
activity of the host immune system.

For extracellular pathway: MIF is abundantly existed in the 
cytoplasm and interacts with other signaling pathways. For 
example, MIF binds to a coactivator of AP-1 transcription 
Jab-1 (Jun activation domain-binding protein) [24], inhibits 
Jab1-mediated JNK activation and then enhances c-Jun 
phosphorylation. MIF also antagonizes JAB dependent cell 
cycle regulation, which is shown in Figure 1 [24]. 

Figure 1: Signaling of MIF. [Sabine Tillmann, Jürgen Bernhagen, Front 
Immunol., 2013].

MIF IN NON-KIDNEY DISEASES

Macrophage migration inhibitory factor (MIF) has emerged as 
a promising therapeutic target in human diseases including 
immune disorder, cancer, cardiologic diseases, diabetes, and 
inflammatory diseases.

Immune diseases

Increasing evidence shows that MIF is involved in the 
regulation of T-cell and B-cell developments, dendritic cell 

(DC) motility, macrophage inflammation, and thymic selection 
[19]. MIF/CD74 plays an important role in many immune 
diseases, such as osteoarthritis and rheumatoid arthritis [25], 
multiple sclerosis [26], Ankylosing spondylitis [27], ANCA-
associated vasculitis [28], systemic lupus erythematosus 
[29]. MIF-deficient MRL/lpr mice have significantly longer 
survival time and fewer renal and skin injury, where MCP-1 
and renal macrophage infiltration were significantly reduced 
[30]. MIF deletion can protect against disease development 
of the collagen- and the adjuvant-induced arthritis models 
[31]. MIF recruits neutrophils via increasing ANCA antigen 
translocation. The recruited neutrophils can be induced by 
ANCA further, resulting in respiratory burst and degranulation 
[28]. MIF is an important element of the inflammatory cascade 
in rheumatoid arthritis development. Several studies have 
been demonstrated that the levels of MIF were increased 
in synovial and serum inRA patients [32,33].  The severity 
of histological arthritis and cartilage damage, as well as 
reduced proliferation of synoviocytes was ameliorated in 
mice lacking MIF [34]. It is also found that MIF promotes 
leukocyte recruitment in the joint under high endotoxin or 
TNF condition [35].

Cancers

MIF is recently found to play a prominent role in the cancer 
progression. Experimental and clinical studies reported that 
high levels of MIF were observed in a number of human 
cancers such as Non-small cell lung cancer [36], acute myeloid 
leukemia [37], breast cancer [38], head and neck squamous 
cell carcinoma [39], colorectal cancer [40], bladder cancer [41], 
etc. MIF stimulates the releasing of angiogenic factors that 
lead to tumor growth and aggressiveness. MIF also triggers 
the production of cytokines and chemokines in the tumor 
microenvironments, which suppresses immune surveillance 
and immune response against tumors, angiogenesis, and 
carcinogenesis thereby leading to pathological condition 
e.g. chronic inflammation and immunomodulation [42]. Wu S 
indicated that MIF promoter polymorphisms (-794CATT) were 
correlated with the early-stage of cervical cancer [43]. Abdul-
Aziz found that MIF was highly expressed in the primary AML 
[37]. In addition, MIF can increase the myeloid suppressor 
cells recruitment and is correlated with bladder cancer via 
CXCL2/MIF-CXCR2 signaling [41]. Bozzi F revealed that MIF/
CD74 axis can be taken as a new therapeutic target in colon 
cancers [44]. 
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Cardiologic diseases 

MIF is markedly upregulated in vulnerable atheromatous 
plaques suggests that MIF may be important in the 
destabilization of human atherosclerotic plaques [45,46]. 
Upregulation of myocardial MIF was observed and may 
contribute to macrophage accumulation in the infarcted 
area and it may play a pro-inflammatory role in the myocyte 
damage in AMI [47]. Karin A.L. Mueller described that the level 
of MIF expression is linked to the degree of myocardial fibrosis 
with progressive chronic HF in patients. MIF predicted all-
cause mortality and the combined study endpoint [48]. In 
mice myocyte infarction models, the amelioration of cardiac 
remodeling and incidence of post-MI cardiac rupture (27% vs. 
53%) was much lower in MIF KO mice than MIF WT mice [49].

Diabetes 

Recently, the term “meta-inflammation” was used to describe 
the low-grade systemic inflammation status in diabetes and 
obesity [50]. Increasing evidence suggests that MIF is involved 
in meta-inflammatory processes. Many studies described 
genetic polymorphisms of MIF were associated with increased 
risk of GDM and insulin resistance in diabetic patients, such 
as genetic polymorphism of rs755622, rs1007888 in MIF, MIF-
173GC polymorphism and MIF gene promoter polymorphisms 
[51-54]. In an animal model of human type 1 diabetes mellitus, 
MIF was revealed that it plays a critical role in the immune-
mediated beta-cell destruction [55]. Other study also indicated 
MIF influences the molecules expression of Mφ and DC 
activation in T1DM, the expression of MHC-II, costimulatory 
molecules CD86, CD80, and CD40, TLR-2, and TLR-4 were lower 
observed in MIF KO mice than MIF WT mice in induced T1DM 
model [56]. New MIF inhibitors were revealed could reduce 
inflammation-caused beta cell death [57]. For example, MIF 
inhibitor ISO-1 was investigated significantly decreased 
macrophage activation in db/db mice, accompanied with 
renal function attenuated and the production of inflammatory 
cytokines reduced [58]. A significant increase of serum level 
of MIF was found in patients with T1DM which indicated that 
MIF could be a therapeutic target for diabetes [59].

Inflammatory diseases

MIF is a pleiotropic cytokine which has chemokine-like 
functions and plays an essential role in both innate and 
acquired immunity. Dysregulated MIF expression was seen 
in various inflammatory conditions [60]. The baseline MIF 

level and inducible MIF expression in the brain reveals 
the importance role of MIF in inflammatiory response in 
neuroendocrine system [4]. MIF also plays a role in cell-
mediated hepatic injury in chronic hepatitis B infection [61]. In 
addition, H. pylori infection is associated with an increasing 
of MIF expression in gastric epithelial and inflammatory cells 
[62]. High expression level of MIF alleles is a genetic marker 
of morbidity and mortality of pneumococcal meningitis [63]. 
MIF plays a crucial pathological role sustaining the alveolar 
inflammatory response in ARDS and that anti-MIF and early 
glucocorticoid therapy may represent a novel therapeutic 
approach in inflammatory diseases [64,65].

MIF IN KIDNEY DISEASES

It was reported MIF contributes to leukocyte infiltration, 
histological damage and renal function impairment in 
multiple kidney diseases. 

MIF is constitutively expressed in normal kidney in 
macrophages, T and B lymphocytes and various non-immune 
cells including tubular and glomerular epithelial cells, 
mesangial cells, endothelial cells, fibroblasts and vascular 
smooth muscle cells [66,67]. MIF was considered to be the 
early prediction of tissue rejection in experimental and 
clinical transplantation [68]. MIF is increased in many kidney 
diseases as: acute kidney injury, lipid-induced glomerular 
injury [69], rat crescentic glomerulonephritis [66], anti-GBM 
diseases [70], ANCN-vasculitis, experimental murine MRL/
lpr lupus nephritis [71], and unilateral ureteral obstruction 
(UUO) obstructive nephropathy [72], acute renal allograft 
rejection [73], acute urate nephropathy [74], aristolochic acid 
nephropathy [75] and IgA nephropathy [76].

In human kidney diseases, dramatic increase in MIF 
expression is detected in both glomerular and tubular 
in proliferative glomerulosclerosis, including lupus 
nephritis, focal segmental glomerulosclerosis (FGS), 
crescentic glomerulosclerosis, mesangial-capillary 
proliferative glomerulosclerosis and allograft rejection 
[67,77]. Furthermore, infiltrating macrophages and T cells 
also express MIF, Matsumoto, K. described that peripheral 
blood T cells isolated from patients with IgAN produced 
more MIF than T cells from healthy controls or patients 
treated with corticosteroids [78]. Furthermore, urine MIF 
level in proliferative glomerulonephritis was increased 
and correlated with the severity of renal injury [79]. Anti-
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MIF neutralizing antibody treatment or MIF deficiency may 
protect mice from kidney diseases. Blocking MIF activity 
with anti-neutralizing antibody can partially reverse mice 
crescentic glomerulonephritis, suggesting that MIF would 
enhance the cellular immune response [80]. Blocking 
MIF using a neutralizing antibody [80] or a MIF inhibitor 
RPS19 [70] can attenuate renal injury by reducing cytokine 
production, leukocyte infiltrates and 24-hour proteinuria 
in anti-GBM glomerulonephritis. In another research of a 
mouse model of IgAN, anti-MIF treatment can ameliorate 
kidney injury and reduce renal TGF-β1 expression [81]. 

ACUTE KIDNEY INJURY

Pathophysiology of Acute Kidney Injury 

Acute kidney injury (AKI) is one of the causes leading to 
chronic kidney diseases (CKD) and is related with high 
mortality rates. The main causes of AKI including prolonged 
renal ischemia, nephrotoxins, glomerular diseases, obstructed 
ultrafiltration. The characteristic of AKI is rapidly declined in 
GFR. Inflammation is an important additional phenomenon 
of AKI exuberate kidney injury. Renal injury usually affects 
the highly metabolic active nephron segments in the renal 
outer medulla, which more likely to suffer kidney injury as 
reversible conditions of hypoxia to intrinsic renal failure. The 
essence of the recovery is the injured tubular epithelial cells 
can restore to normal function and promote regeneration. 
Recent researchers suggest that AKI has a potential tendency 
to CKD. Thus, early diagnosis of AKI is essential for treating 
patients with AKI, and potential biomarkers of AKI may be a 
promising therapeutic target in the future. 

Inflammation and acute kidney injury

Inflammation is the main characteristic of AKI. Inflammation 
is a significant component of renal I/R injury, playing a 
considerable role in its pathophysiology. Endothelial injury, 
generation of inflammatory mediators, leukocyte infiltration 
largely contributes to the pathogenesis of AKI. 

Injury of the kidney contributes to inflammatory response, 
results in endothelial activation and injury, enhances 
leukocyte entrapment, endothelial cell-leukocyte adhesion 
and an accommodation in microvascular blood flow as shown 
in Figure 2 [82,83].

The outer medulla is impacted in a greater extent than the 
cortex during leukocyte-endothelial, which is indicated by 

the marked vascular overcrowding seen in the outer medulla. 
Leukocyte subgroups such as neutrophils and T lymphocytes 
are all contributed to I/R injury [84-86]. Neutrophils from 
patients with sepsis-induced AKI showed abolished ex-
vivo slow rolling, compared with neutrophils from healthy 
volunteers and patients with sepsis but no AKI. Blocking 
neutrophil infiltration protects the kidney against ischemic 
renal injury, even when the antibody was administered 
after ischemic happened [87]. CD4/CD8 Knockout mice are 
protected against I/R injury, with a reduction of neutrophils 
infiltration and T cells adhesion to the renal tubular epithelial 
cells, suggesting a pathophysiological role for neutrophils 
and T lymphocytes in AKI [88]. Macrophages infiltrate the 
injured kidney within 1 hour of ischemia reperfusion and this 
activity is mediated by fractalkine (CXCL1), both ischemia- 
and cisplatin-induced AKI triggers fractalkine expression 
in peritubular capillary endothelial cells. Using anti-CX3C 
receptor-1 antibody can effectively attenuate the severity of 
AKI in mice, macrophages lacking CCR do not infiltrate injured 
kidneys and the resultant injury is less severe[89]; while 
transferring activated RAW 264.7 macrophages exacerbates 
kidney injury [89,90].

Figure 2: Schematic illustration of the inflammatory mediators produced 
by tubular epithelial cells and activated leukocytes in renal ischemia/
reperfusion (I/R) injury [84] (Joseph V. Bonventre & Anna Zuk, Kidney Int., 
2004).

The outer medulla is impacted in a greater extent than the 
cortex during leukocyte-endothelial, which is indicated by 
the marked vascular overcrowding seen in the outer medulla. 
Leukocyte subgroups such as neutrophils and T lymphocytes 
are all contributed to I/R injury [84-86]. Neutrophils from 
patients with sepsis-induced AKI showed abolished ex-
vivo slow rolling, compared with neutrophils from healthy 
volunteers and patients with sepsis but no AKI. Blocking 
neutrophil infiltration protects the kidney against ischemic 
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renal injury, even when the antibody was administered 
after ischemic happened [87]. CD4/CD8 Knockout mice are 
protected against I/R injury, with a reduction of neutrophils 
infiltration and T cells adhesion to the renal tubular epithelial 
cells, suggesting a pathophysiological role for neutrophils 
and T lymphocytes in AKI [88]. Macrophages infiltrate the 
injured kidney within 1 hour of ischemia reperfusion and this 
activity is mediated by fractalkine (CXCL1), both ischemia- 
and cisplatin-induced AKI triggers fractalkine expression 
in peritubular capillary endothelial cells. Using anti-CX3C 
receptor-1 antibody can effectively attenuate the severity of 
AKI in mice, macrophages lacking CCR do not infiltrate injured 
kidneys and the resultant injury is less severe[89]; while 
transferring activated RAW 264.7 macrophages exacerbates 
kidney injury [89,90]. 

In addition to the accumulation of leukocytes and endothelial 
cells injury to the inflammatory response in AKI, the injured 
tubular epithelial cells and activated leukocytes also generate 
mediators that exacerbate inflammation including TNF-α, IL-
1, IL-6, IL-8, TGF-β, MCP-1, ENA-78, RANTES, and fractalkines 
[91]; while leukocytes may produce IL-1, IL8, MCP-1, reactive 
oxygen species and eicosanoids.  Both experimental and 
clinical data have been shown that AKI exerts its regulatory 
effects on innate immunity via modulating the cytokine 
homeostasis [92]. In mice model of AKI, the surgery leads to a 
profound release of proinflammatory cytokines (IL-6 or TNF-α), 
and remain increased for several days. While sham surgery 
does not lead to such a prolonged cytokine release [93]. Study 
indicated TLR4 may also very important at the beginning of 
transplant.  Less MCP-1 and TNFα were detected in the donor 
kidneys in TLR4 deletion mice but with more heme-oxygenase 
1 (HO-1) expression [94]. The decline in renal function during 
AKI is likely to play a major role in cytokine clearance in a rat 
model of rhabdomyolysis-induced AKI [95]. This decline in turn 
led to a sustained increase in plasma cytokine concentrations. 
Another mechanism cytokine levels are increased in AKI may 
be augmented production of inflammatory mediators by renal 
tubular cells in response to injury or cytokines [96,97]. Specific 
cytokine intervention may offer a new therapeutic hope.

Although significant progress has been made in defining the 
major components of MIF-mediated AKI, the complex cross 
talk between endothelial cells, inflammatory cells, and the 
injured epithelium with each generating and responding to 
cytokines and chemokines is not well understood. 

MIF ASSOCIATED RENAL INFLAMMATION IN AKI

Elevated urinary MIF has previously been observed in AKI 
during kidney infection in patients, and accompanied with 
the severity of renal injury in acute pyelonephritis, Brown 
FG indicated that urine MIF concentration is correlated 
with the degree of renal dysfunction, histologic damage, and 
leukocytic infiltration in human glomerulonephritis and 
has also been suggested as a potential biomarker for acute 
kidney damage [98,99]. Similar findings have been exhibited 
in kidney transplantation, urinary MIF was increased on day 
1 posttransplantation and changed parallel with the serum 
creatinine, urine MIF increased even before biopsy proven acute 
renal rejection [79]. “Severe AKI” had higher levels of plasma 
IL-10, MIF and IL-6 compared to “no AKI” and “mild AKI” in 
septic patients admitted to the ICU [100]. In animal models and 
in vitro studies, MIF induced leukocytes accumulation as well 
as tissue infiltration of leukocytes thus induces multi-organ 
damage affecting both lungs and kidneys, treatment with anti-
MIF antibody attenuated pulmonary pathology in mice with 
LPS-induced acute lung injury or anti-GBM glomerulonephritis 
via reducing the upregulation of IL-1β, ICAM-1 and VCAM-1 
[101-103]. Recently study reported that plasma MIF level in was 
elevated in AKI patients after orthotropic liver transplantation 
patients and was more valuable in identifying the prognosis 
of AKI and predicting the requirements of renal replacement 
therapy after operation [104]. MIF and its receptor CD74 may 
be useful targets to reduce neutrophilic inflammation in 
acute lung injury [101]. In heart, the upregulation of MIF levels 
contributes to AMPK activation thus protects mice from heart 
infarction [105]. The mechanism of MIF in the progression of 
AKI is needed to be further elucidated.
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