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ABSTRACT

The histological features of the ventral ribs were identified using semithin sections. The ventral rib had two cartilaginous 
ends and an elongated body. The cartilaginous ends exhibited typical zonal organization of the growth plate. The body was 
comprised of bone collar and the medullary cavity. Chondrocytes were organized in the resting, proliferating and hypertro-
phic zones. Cartilage matrix subjected to extensive degradation and erosion particularly by Chondroclasts. At the level of 
the hypertrophic zone, perichondral bone was formed and small projections of the bone tissues extended to the cartilage 
matrix. However, no medullary bone was formed beyond the hypertrophic zone. Cartilage erosion was also identified in the 
sub-osseous tissue and in the interior cartilage matrix. In the body of the ventral ribs, a remnant of the hypertrophic zone 
was surrounded by perichondral bone. Chondroclast was detected at the eroding surface of the cartilage matrix. Active os-
teoblasts, that had an oval or columnar in shape, were aligned at the surface of the bone collar as well as the resting osteo-
blasts. In conclusion, ventral ribs of the silver carp grow by perichondral bone formation in addition to the linear expansion 
of the growth cartilage.  

INTRODUCTION
Skeletal system attracts biologists to investigate varieties of 
the morphological characteristics among different aquatic 
species. The significance of fish skeleton extends not only to 
support the body but also as aids for locomotion and swim-
ming. Aquatic skeletal modification adopts diverse physical ac-
tivities including the locomotion on land, swimming patterns, 
habitual behaviors such as migration. The supportive fish skel-
eton consists of different types of bone, cartilage and dentine 
and enamel/enameloid. Bone categorized according to the 
existence of cellular components. The cellular bone harbors 
typical organization of the osteocytic network. The acellular 
bone is devoid of osteocytes. Fish cartilage is classified de-
pending on the predominant cellular or fibrillar components 
such as hyaline, Elastic/cell‐rich cartilage , Elastic hyaline cell 
cartilage , Fibro/cell‐rich cartilage , Fibrohyaline‐cell cartilage,  
Degrading cartilages and cartilage-like tissue including Chon-
droid bone, Mucochondroid and notochord [1].

Bone develops by two modes intramembranous ossification 
and endochondral ossification. Intramembranous ossification 

is characteristic for the cranial bone where the bone spicules 
are formed within the condensed mesenchymal membranes. 
Endochondral ossification depends on formation of a transient 
cartilage template which is gradually replaced by bone tis-
sue. Cartilage template exhibits a specific zonal arrangement 
where the cartilage grows through progressive proliferation 
of chondrocytes. Proceeding the proliferating stage, the rest-
ing stage that retains the self-renewal capacity. Proliferating 
chondrocytes exit the cell cycle and undergo hypertrophy. Hy-
pertrophied chondrocytes prepare the extracellular matrix for 
deposition of bone tissue.  Endochondral bone formation ar-
chives bone growth as chondrocytes capable to replicate and 
produce extracellular matrix that adopt the bone formation.  

Bone growth is widely investigated in mammals and avian spe-
cies [2, 3, 4]. Few studies described bone growth in aquatic 
species. Some literatures described the two modes of bone 
growth in aquatic species [5, 6] as well as the perichondrial 
and parachondral type of ossification [1]. However, specifica-
tion of the different modes of bone growth to the axial and 
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appendicular skeleton has not yet been elucidated. Moreover, 
growth of different types of bone in different skeletal ele-
ments and species of fish is still ambiguous. The current study 
aimed to investigate type of ossification occurred in the ven-
tral ribs of the silver carp. 

MATERIAL AND METHODS 

Fish transportation was performed according to [7]. Ten sam-
ples were obtained from silver carp, Hypophthalmichthys mo-
litrix. The ventral ribs were carefully dissected from the fish 
body.  Sampling and samples fixation were performed regard-
ing to [3]. Protocol of processing for preparation of resin em-
bedding samples was performed according to [4]. Semithin 
sections were stained using toluidine blue [7, 8].

RESULTS

The histological features of the ventral ribs were identified us-
ing semithin sections. The ventral rib had two cartilaginous 
ends and an elongated body. The cartilaginous ends exhibited 
typical zonal organization of the growth plate (Figure. 1A-C, 
E). The body was comprised of bone collar and the medullary 
cavity (Figure. 1D).

Figure 1: Location and General morphology of the ventral ribs in Silver 
carp

A: Silver carp. B: An illustration of a part of the endoskeleton of the Silver 
carp.

C: proximal end of the ventral rib. Note the cartilage template exhibited 
typical zonal organization  of the growth plate. D: body of the ventral 
rib. Note Bone collar (B), Medullary Cavity (m). E: An illustration of the 
ventral rib. note the squared areas of C and D represent the areas of 
Figure C and D. 

Chondrocytes were organized in the resting, proliferating and 
hypertrophic zones. Cartilage matrix subjected to extensive 
degradation and erosion particularly by Chondroclasts (Fig-

ure. 2).  At the level of the hypertrophic zone, perichondral 
bone was formed and small projections of the bone tissues 
extended to the cartilage matrix (Figure. 3). However, no 
medullary bone was formed beyond the hypertrophic zone. 
Cartilage erosion was also identified in the sub-osseous tissue 
and in the interior cartilage matrix (Figure. 4).  In the body of 
the ventral ribs, a remnant of the hypertrophic zone was sur-
rounded by perichondral bone. Chondroclast was detected at 
the eroding surface of the cartilage matrix. Active osteoblasts, 
that had an oval or columnar in shape, were aligned at the 
surface of the bone collar as well as the resting osteoblasts 
(Figure 5).

Figure 2: Cartilage template exhibited typical zonal organization of the 
growth plate

Chondrocytes were organized in the resting (R), proliferating (P), Hyper-
trophic (H) zones. Note degradation and erosion (E) of the metachromat-
ic matrix of growth cartilage. Chondroclast (arrowheads). 

Figure 3: Perichondral bone occurred around the upper hypertrophic 
zone 
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Hypertrophic chondrocytes (H),  Note: Bone was confined to the peri-
chondral area (B), small projections of the bone tissues into the cartilage 
matrix (arrows)

Figure 4: Erosion of the cartilage matrix in the lower hypertrophic zone 

Hypertrophic chondrocytes (H),  Perichondral bone (B), Erosive (E) event 
was detected in the sub-osseous tissue and in the interior cartilage ma-
trix.

Figure 5: The body of the  ventral rib 

Remnants of the hypertrophic zone (H), Perichondral bone (B), Chondro-
clast (arrowheads), active osteoblasts (arrow) had an oval or columnar 
shape, resting osteoblasts (double arrow) were flattened.  

DISCUSSION 

The functional significance of the ribs in fish render it worth 
to be studied. Fish ribs support the myosepta and forms the 
rib cage in which the vital organs are protected such as liver, 

spleen, heart [9, 10].  In the current study, one type of bone 
growth was identified in the ventral ribs of the silver carp. The 
ribs grow primarily through perichondral ossification. Peri-
chondral ossification occurs in a manner identical to perioste-
al bone formation as described in mammals and avian species. 
The perichondrium undergoes maturation and transforms to 
periosteum in which the cells are driven toward the osteogen-
ic cell lineage, activate genes characteristic  of osteoblasts and 
secrete components of bone matrix around the circumference 
of the cartilage [11]. Perichondral ossification has been identi-
fied  in medaka hypurals [12], gill cartilage of the Jordanella 
floridae [13, 14, 5].

Although typical growth cartilage was detected in the ends of 
the ventral ribs of the silver carp, it lacked endochondral os-
sification and medullary bone formation. Two modes of car-
tilage-dependent bone growth have been specified for fish; 
endochondral and perichondral ossification [1]. Endochondral 
bone develops by gradual replacement of the cartilage tissue 
by bone tissue and occurs via three mechanisms. The first 
mechanism is formation of the perichondral bone which is 
developed by an apposition manner. The second mechanism 
is formed via replacement of the cartilage through an endo-
chondral ossification. The third mechanism is continuation of 
apposition bone formation [15]. Not only the mechanisms of 
cartilage replacement are different but also the type of bone 
is varied in different anatomical locations. Endochondral bone 
could be cellular or acellular types [5]

Occurrence of endochondral bone formation is probably relat-
ed to fish size  [1, 6]. Endochondral bone formation has been 
identified in large sized teleost species such as carp Cyprininus 
carpio, Atlantic salmon [16] but is uncommon for the small-
sized species such as medaka [17] and Astatotilapia elegans 
[18]. 

Two types of endochondral ossification have been described 
in zebrafish. Type I endochondral ossification is identical to 
other vertebrates and is associated by formation of spongy 
bone. Type II lacks  zone of calcification and a degradation 
zone and osteoblasts instead, a compact layer of chondro-
clasts is detected [5]. In the current study, the ribs of silver 
carp exhibit typical mode of endochondral ossification to type 
II. Vertebrae develops through endochondral bone formation 
of primary cartilaginous models [19]. Two forms of bone have 
been identified in quail embryos during growth of femur and 
tibia. The first form develops the physeal growth cartilage 
with no signs of endochondral bone formation in embryonic 
and juvenile stages, while, endochondral bone appears with 
progression of the age particularly form the tenth day of post-
natal development [20]. However, it is common that physeal 



www.mathewsopenaccess.com

4Citation: Soliman AS. (2018). The Growth Cartilage and Beyond: Absence of Medullary Bone in Silver Carp Ribs. M J Cyto. 2(1): 008. 

growth plate is associated with endochondral bone formation 
in mammals [21-25].

It is concluded that the ventral ribs of the silver carp grow by 
perichondral bone formation in addition to the linear expan-
sion of the growth cartilage.  
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