

Superparamagnetic Nanoparticles as Game-Changers for Advanced Dentistry

Muhammad Usman Asif^{1,2}, Noor Zulfiqar^{3,*}, Fawad Inam⁴

¹*MSc in International Health Management, Berlin School of Business and Innovation, Berlin, Germany*

²*Department of Oral Maxillofacial Surgery, Dow University of Health Science, Karachi, Pakistan*

³*Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad, Pakistan*

⁴*School of Architecture, Computing and Engineering, University of East London, Docklands Campus, University Way, London, UK*

ABSTRACT

Magnetite nanoparticles (Fe_3O_4 NPs) have emerged as multifunctional nanomaterials with significant potential in modern dentistry due to their unique magnetic properties, biocompatibility, and ease of surface functionalization. Recent advances in nanotechnology have enabled their application in antimicrobial therapy, drug delivery, dental implants, regenerative dentistry, diagnostic imaging, and orthodontics. This review critically summarizes the synthesis strategies, physicochemical properties, and biological interactions of magnetite nanoparticles, with a particular focus on their current and prospective applications in dentistry. The mechanisms underlying their antibacterial, biofilm-disruptive, and regenerative effects are discussed, along with safety, toxicity, and clinical translation challenges. Finally, future research directions and opportunities for integrating Fe_3O_4 nanoparticles into next-generation dental materials and therapies are highlighted.

Keywords: Magnetite Nanoparticles, Fe_3O_4 , Dentistry, Antimicrobial Activity, Drug Delivery, Dental implants, Regenerative Dentistry, Nanotechnology.

Vol No: 10, Issue: 01

Received Date: December 23, 2025

Published Date: January 30, 2026

*Corresponding Author


Noor Zulfiqar

Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad, Pakistan, Phone: +923178354635, E-mails: 2018ag3898@uaf.edu.pk; chemistnoor94@gmail.com

Citation: Asif MU, et al. (2026). Chasing Perfection: The Trap of Overtreatment in Aesthetic Dentistry. Mathews J Dentistry. 10(1):61.

Copyright: Asif MU, et al. © (2026). This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

GRAPHICAL ABSTRACT

INTRODUCTION

Oral diseases, including dental caries, periodontitis, peri-implantitis, and endodontic infections, continue to pose significant challenges to global health, affecting millions of people worldwide. These conditions not only compromise oral function and aesthetics but also have broader systemic implications, contributing to cardiovascular, metabolic, and inflammatory disorders. Despite advances in preventive and therapeutic dentistry, conventional treatments often face limitations. Mechanical debridement, chemical disinfectants, and systemic antibiotics may fail to completely eradicate biofilms or reach deep periodontal pockets, leading to recurrent infections. Moreover, prolonged systemic drug administration can cause adverse effects, and traditional dental materials often lack the ability to actively promote tissue regeneration or combat microbial colonization effectively. These challenges highlight the need for innovative strategies that combine precision, efficacy, and biocompatibility [1].

In recent years, nanotechnology has emerged as a promising avenue to address these limitations, offering tools for enhanced diagnostics, targeted therapy, and tissue engineering. Among the diverse range of nanomaterials investigated for dental applications, magnetite nanoparticles (Fe_3O_4 NPs) have garnered particular interest due to their

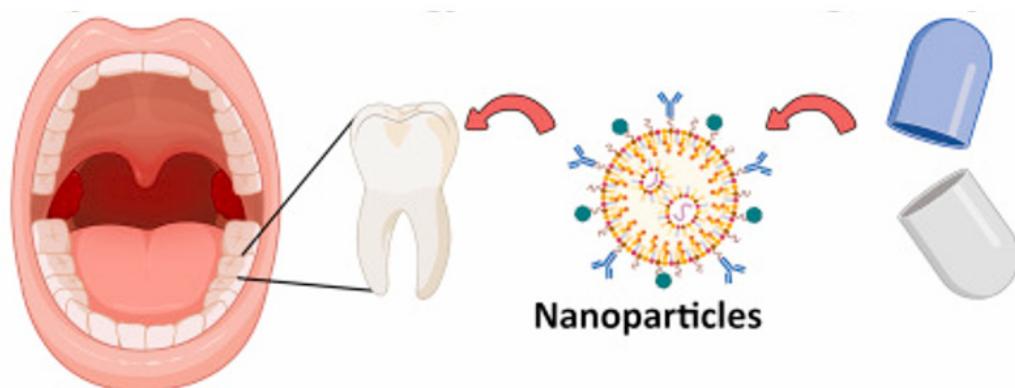
unique physicochemical and magnetic properties. Their superparamagnetic behavior allows nanoparticles to respond to external magnetic fields without retaining residual magnetism, enabling precise localization and controlled movement within the oral cavity. Additionally, their high surface area-to-volume ratio facilitates the loading of therapeutic agents, while their intrinsic biocompatibility reduces the risk of cytotoxic effects. These characteristics make Fe_3O_4 NPs versatile platforms for applications such as antimicrobial coatings, targeted drug delivery, biofilm disruption, and regenerative therapies [2,3].

This review aims to provide a comprehensive overview of the current state of research on magnetite nanoparticles in dentistry. It discusses various synthesis methods, highlighting how particle size, shape, and surface functionalization influence their behavior and efficacy. The key physicochemical and biological properties that render Fe_3O_4 nanoparticles suitable for dental applications are examined, followed by a detailed exploration of their antimicrobial, anti-biofilm, and drug delivery capabilities. Finally, the review addresses current challenges, safety considerations, and future perspectives, emphasizing the potential of Fe_3O_4 nanoparticles to transform precision dental care and improve patient outcome.

Table 1. Applications of Magnetite Nanoparticles in Dentistry

Application Area	Mechanism / Approach	Target / Function	Key Advantages / Outcomes
Antimicrobial & Anti-biofilm	Generation of ROS, disruption of bacterial membranes, metabolic interference; magnetic guidance	<i>Streptococcus mutans</i> , <i>Enterococcus faecalis</i> , <i>Porphyromonas gingivalis</i>	Effective biofilm disruption, reduced bacterial colonization, potential incorporation in toothpastes, mouthwashes, coatings
Drug Delivery (Periodontal Therapy)	Drug loading (antibiotics, anti-inflammatory agents, growth factors) onto Fe_3O_4 NPs; magnetic guidance to target site; controlled release	Deep periodontal pockets	Localized high drug concentration, minimal systemic exposure, improved therapeutic outcomes
Dental Implants & Restorative Materials	Surface coatings or composite incorporation; bioactive scaffold integration	Titanium implants, restorative composites	Enhanced osteoblast adhesion & proliferation, antibacterial effect, improved mechanical strength & wear resistance, reduced peri-implantitis risk
Hyperthermia & Endodontic Applications	Alternating magnetic field induces localized heating; selective bacterial killing	Infected root canals, peri-implant tissues	Minimally invasive bacterial eradication, preserves surrounding healthy tissue, adjunct to conventional endodontics
Regenerative Dentistry	Integration into scaffolds or hydrogels; magnetic stimulation of stem cells	Alveolar bone, periodontal ligament, dentin-pulp complex	Promotes stem cell migration, differentiation, mineralization; enhances bone and dentin regeneration
Diagnostic & Imaging Applications	MRI contrast enhancement; functionalized biosensors	Oral soft tissues, TMJ, inflammatory lesions	Non-invasive imaging, early disease detection, improved diagnostic sensitivity and specificity

Global Burden of Oral Diseases and Need for Advanced Materials


Oral diseases, including dental caries, periodontal disease, peri-implantitis, and endodontic infections, affect more than 3.5 billion people worldwide and represent a major public health challenge. Despite advancements in restorative and preventive dentistry, the persistence of microbial biofilms, antibiotic resistance, and implant-associated infections continues to compromise clinical outcomes. Conventional antimicrobial agents often fail to fully eradicate structured oral biofilms, leading to recurrent infections and chronic inflammation. These limitations have driven interest in advanced biomaterials capable of targeted, multifunctional, and minimally invasive therapeutic action.

Nanotechnology has emerged as a transformative discipline in dentistry, enabling the manipulation of materials at

the nanoscale to enhance biological interactions. Among various nanomaterials, magnetic iron oxide nanoparticles—particularly magnetite (Fe_3O_4)—have gained increasing attention due to their unique magnetic responsiveness, catalytic properties, and favorable biocompatibility.

Overview of Magnetic Nanoparticles in Biomedical and Dental Fields

Magnetic nanoparticles (MNPs) are a class of nanomaterials that respond to external magnetic fields, enabling controlled movement, heating, and targeting. In biomedical sciences, MNPs have been widely investigated for drug delivery, hyperthermia, imaging, biosensing, and tissue engineering. Their translation into dentistry is a logical extension of these successes, particularly given the accessibility of the oral cavity and the localized nature of many dental diseases.

Figure 1. Role of nanoparticles in dental drug delivery [4].

Iron oxide nanoparticles primarily exist in two crystalline forms: magnetite (Fe_3O_4) and maghemite ($\gamma-Fe_2O_3$). Magnetite is particularly attractive due to its higher saturation magnetization and superior magnetic responsiveness, which allow precise manipulation under relatively weak magnetic fields. These characteristics make Fe_3O_4 nanoparticles especially suitable for dental applications requiring localized control, such as periodontal therapy and implant surface modification [5].

Physicochemical Properties of Magnetite (Fe_3O_4) Nanoparticles Relevant to Dentistry

Crystal Structure and Magnetic Behavior

Magnetite possesses an inverse spinel crystal structure, with Fe^{2+} and Fe^{3+} ions occupying tetrahedral and octahedral sites. When particle sizes are reduced below approximately 20 nm, Fe_3O_4 nanoparticles exhibit superparamagnetic behavior, characterized by high magnetic susceptibility without residual magnetization after removal of the magnetic field. This property is critical for biomedical safety, as it prevents particle aggregation *in vivo*.

Surface Area and Reactivity

The high surface area-to-volume ratio of Fe_3O_4 nanoparticles enhances their interaction with biological tissues, bacterial membranes, and biomolecules. This property enables efficient drug loading, surface functionalization, and catalytic activity, which are central to their antimicrobial and therapeutic performance in dental settings [6].

Surface Functionalization

Unmodified Fe_3O_4 nanoparticles tend to aggregate and oxidize; therefore, surface modification is essential. Coatings such as polyethylene glycol (PEG), chitosan, dextran,

silica, and bioactive polymers improve colloidal stability, biocompatibility, and targeting ability. Functionalization also allows conjugation with antibiotics, peptides, growth factors, and enzymes, expanding their utility in dentistry [7].

SYNTHESIS AND PHYSICOCHEMICAL PROPERTIES OF MAGNETITE NANOPARTICLES

Synthesis Methods

Magnetite nanoparticles can be synthesized using various chemical and physical approaches, including:

- **Co-precipitation method:** The most widely used technique, offering simplicity, scalability, and cost-effectiveness.

- **Hydrothermal and solvothermal methods:** Provide better control over particle size and crystallinity.

- **Thermal decomposition:** Produces highly uniform nanoparticles but requires high temperatures and organic solvents.

- **Green synthesis:** Utilizes plant extracts or biopolymers, aligning with sustainable and eco-friendly principles.

Co-precipitation Method

The co-precipitation method is the most commonly employed technique for Fe_3O_4 nanoparticle synthesis due to its simplicity, cost-effectiveness, and scalability. This approach involves the precipitation of ferrous (Fe^{2+}) and ferric (Fe^{3+}) ions in an alkaline medium, typically using ammonia or sodium hydroxide, under controlled conditions. By adjusting parameters such as pH, temperature, ionic strength, and reaction time, nanoparticles with desired sizes and magnetic properties can be obtained. One of the main advantages of this method is its ability to produce large quantities of nanoparticles at room temperature without the need for complex equipment. However, challenges such as particle aggregation, polydispersity, and surface defects must be carefully managed through the use of stabilizers

or surfactants. Co-precipitation remains highly suitable for biomedical and dental applications due to its simplicity and potential for surface functionalization with drugs, polymers, or biomolecules.

Hydrothermal and Solvothermal Methods

Hydrothermal and solvothermal techniques are widely used when precise control over nanoparticle size, shape, and crystallinity is required. These methods involve chemical reactions in sealed autoclaves under elevated temperature and pressure, which promote the growth of well-defined crystalline nanoparticles. The choice of solvent and reaction conditions can influence particle morphology, enabling the production of spheres, rods, or cubes depending on the desired application. Hydrothermal and solvothermal methods are particularly advantageous for dental applications where uniformity in magnetic properties and high crystallinity are critical for drug delivery, imaging, or biofilm disruption. Furthermore, these methods allow the incorporation of surface coatings, dopants, or functional ligands during synthesis, expanding the multifunctionality of the resulting nanoparticles [8].

Thermal Decomposition

Thermal decomposition involves the breakdown of iron precursors, such as iron acetylacetone or iron oleate, at high temperatures in the presence of organic solvents and surfactants. This approach produces highly uniform nanoparticles with excellent crystallinity and well-controlled size distributions, which are essential for achieving reproducible magnetic and biomedical performance. While thermal decomposition offers superior control over particle characteristics, it has notable limitations, including high energy requirements, the use of toxic organic solvents, and difficulties in large-scale production. Post-synthesis surface modification is often necessary to render the nanoparticles water-dispersible and biocompatible for dental applications.

Green Synthesis Approaches

In recent years, green or eco-friendly synthesis methods have gained significant attention due to their sustainability and minimal environmental impact. These approaches utilize natural reducing agents such as plant extracts, polysaccharides, or other biopolymers to synthesize Fe_3O_4 nanoparticles under mild conditions. Green-synthesized nanoparticles often exhibit enhanced biocompatibility, reduced cytotoxicity, and inherent functional groups on the surface that facilitate further modification with drugs or polymers. Such environmentally conscious methods align

with the increasing demand for sustainable nanotechnology in dentistry and other biomedical fields. Green synthesis not only reduces the use of hazardous chemicals but also offers the potential for multifunctionalization, making these nanoparticles highly suitable for antimicrobial coatings, drug delivery systems, and tissue engineering applications [7,8-10].

In summary, the choice of synthesis method significantly influences the physical, chemical, and biological properties of Fe_3O_4 nanoparticles [8]. Co-precipitation provides simplicity and scalability, hydrothermal and solvothermal techniques allow precise control over morphology, thermal decomposition ensures uniformity and crystallinity, and green synthesis offers sustainability and biocompatibility. Selecting the appropriate method depends on the intended dental application, desired nanoparticle properties, and considerations for clinical translation.

Key Properties Relevant to Dentistry

Magnetite (Fe_3O_4) nanoparticles possess several intrinsic properties that make them particularly suitable for a wide range of dental applications. One of the most important features is their superparamagnetism at nanoscale sizes, which allows them to respond strongly to external magnetic fields without retaining residual magnetism when the field is removed. This property is crucial for applications such as targeted drug delivery, magnetic resonance imaging (MRI) contrast enhancement, and magnetic-guided biofilm disruption in dental treatments. Additionally, Fe_3O_4 nanoparticles exhibit high saturation magnetization, which ensures efficient magnetic responsiveness even at low particle concentrations, further increasing their utility in precision dentistry [11].

Another key attribute is their chemical stability and robustness under physiological conditions. Fe_3O_4 nanoparticles are resistant to oxidation and maintain their structural integrity in the aqueous and complex biochemical environments of the oral cavity. This stability ensures consistent performance during therapeutic interventions and reduces the risk of unwanted chemical reactions with surrounding tissues or dental materials. Furthermore, their surfaces can be easily functionalized with a variety of polymers, drugs, or biomolecules, allowing researchers and clinicians to tailor the nanoparticles for specific applications such as antimicrobial coatings, controlled drug release systems, or tissue engineering scaffolds. This versatility enhances the range of therapeutic and preventive options available in modern dental practice [12].

Biocompatibility and biodegradability are additional factors that contribute to the clinical relevance of Fe_3O_4 nanoparticles. Studies have shown that when appropriately synthesized and surface-modified, these nanoparticles are well-tolerated by oral tissues, minimizing cytotoxicity and inflammatory responses. Surface modification using biocompatible agents such as chitosan, polyethylene glycol (PEG), or silica further improves their stability, dispersibility, and biological

interactions. These coatings not only enhance their safety profile but also provide functional sites for conjugation with therapeutic molecules, enabling multifunctional applications. Collectively, the unique combination of magnetic, chemical, and biological properties of Fe_3O_4 nanoparticles makes them highly promising candidates for next-generation dental materials and therapies.

Table 2. Synthesis, Properties, and Dental Relevance of Fe_3O_4 Nanoparticles [2]

Category	Details	Advantages for Dentistry	Notes / Considerations
Synthesis Methods	Co-precipitation	Simple, cost-effective, scalable	Requires pH & temperature control to prevent aggregation
	Hydrothermal / Solvothermal	High crystallinity, uniform size & shape, tunable morphology	Suitable for precise applications; allows functionalization during synthesis
	Thermal Decomposition	Highly uniform, monodisperse nanoparticles	Requires high temperature & organic solvents; post-synthesis coating often needed
	Green Synthesis	Uses plant extracts or biopolymers, eco-friendly	Biocompatible, sustainable; aligns with clinical safety requirements
	Superparamagnetism	Enables magnetic targeting, hyperthermia, and controlled release	Essential for precision therapy
Key Physicochemical Properties	High saturation magnetization	Strong magnetic response, efficient guidance	Important for drug delivery & imaging
	Chemical stability	Maintains performance under oral conditions	Reduces degradation or unwanted reactions
	Surface functionalization	Attachment of drugs, polymers, ligands	Enhances biocompatibility, targeting, antimicrobial activity
	Biocompatibility & biodegradability	Safe for oral tissues, reduces cytotoxicity	Surface coatings (PEG, chitosan, silica) further improve safety

3. Antimicrobial and Anti-Biofilm Applications

Dental biofilms, which are structured communities of microorganisms embedded in a protective extracellular matrix, represent a significant challenge in oral health due to their inherent resistance to conventional antimicrobial treatments. These biofilms contribute to the development of dental caries, periodontal disease, and endodontic infections, making their effective control crucial for maintaining oral hygiene. Magnetite (Fe_3O_4) nanoparticles have emerged as promising antimicrobial agents owing to their intrinsic ability to inhibit bacterial growth through multiple mechanisms. They can generate reactive oxygen species (ROS) that induce oxidative stress in microbial cells, disrupt bacterial cell membranes, and interfere with essential metabolic pathways, collectively resulting in significant antibacterial effects [11].

Several in vitro and in vivo studies have demonstrated the efficacy of Fe_3O_4 nanoparticles against major oral pathogens, including *Streptococcus mutans*, *Enterococcus faecalis*, and *Porphyromonas gingivalis*. These bacteria are responsible for caries formation, root canal infections, and periodontal tissue destruction, respectively, and are notoriously difficult to eliminate with standard antimicrobial agents. The small size and high surface area of Fe_3O_4 nanoparticles facilitate close interaction with bacterial cells and biofilm matrices, enhancing their antimicrobial potency. Additionally, surface functionalization with cationic polymers, antibiotics, or enzymes can further improve the targeting and eradication of microbial communities while maintaining biocompatibility with oral tissues [13].

A 2025 study developed a magnetic nanomaterial composed of Fe_3O_4 nanoparticles coated with silica and functionalized with **dimethylaminododecyl methacrylate (DMADDM)**. At an optimized concentration (8 mg/mL), these **$\text{Fe}_3\text{O}_4@\text{SiO}_2@\text{DMADDM}$ nanoparticles significantly reduced *Streptococcus mutans* biofilm formation and inhibited lactic acid production**, a key contributor to caries development. In saliva-derived microcosm biofilm models, the material also decreased the relative abundance of cariogenic bacteria (e.g., *Streptococcus*, *Veillonella*, *Neisseria*), demonstrating both **antimicrobial and biofilm-suppressive effects** relevant to plaque control and caries prevention. Additionally, the magnetic properties allowed **mechanical removal of biofilm** under an external field, enhancing efficacy [14].

Researchers reported **Fe_3O_4 core-ZnO shell nanoparticles functionalized with epsilon-polylysine (EPL) designed for dual photothermal and antimicrobial action** against *Porphyromonas gingivalis*, a primary periodontal pathogen. The Fe_3O_4 core endowed the particles with photothermal properties that **dispersed dense biofilm structures**, allowing deeper penetration of antimicrobial components. In vitro, these **$\text{Fe}_3\text{O}_4/\text{ZnO}/\text{EPL}$ nanospheres facilitated enhanced antibacterial effects against *P. gingivalis* biofilms**, and in animal models of periodontitis they exhibited **acceptable biosafety profiles while reducing biofilm-associated inflammation**, showing promise as a treatment strategy for periodontal disease [15].

A previous study prepared **Fe_3O_4 nanozymes with tailored morphologies (e.g., octahedral, flower-like)** to enhance **biofilm penetration and removal on implant surfaces**. These nanozymes exhibited **photothermal and catalytic activity**, generating reactive oxygen species and localized heating to disrupt established biofilms. When acted upon by a magnetic field, they could **move deeper into biofilm matrices and effectively remove bacterial communities** that commonly form on dental implants, highlighting a multimodal strategy combining chemical antimicrobial effects with physical disruption [16].

Beyond chemical antimicrobial activity, Fe_3O_4 nanoparticles offer physical strategies for biofilm control through magnetic guidance. External magnetic fields can direct nanoparticles to biofilm-laden areas, allowing localized mechanical disruption and removal of bacterial aggregates from tooth surfaces and root canals. This dual action—chemical and physical—makes Fe_3O_4 nanoparticles highly versatile for incorporation into various oral care products, such as

toothpastes, mouthwashes, dental sealants, and coatings on restorative materials. By integrating these nanoparticles into preventive and therapeutic dental applications, it becomes possible to enhance biofilm management, reduce infection recurrence, and improve overall oral health outcomes.

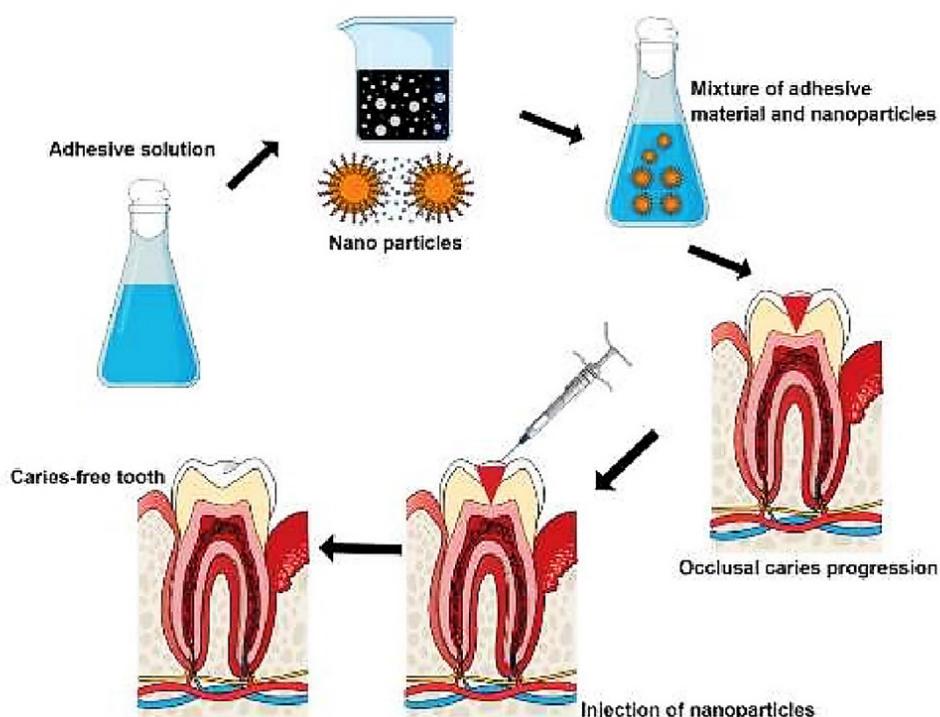
MAGNETITE NANOPARTICLES IN DRUG DELIVERY FOR PERIODONTAL THERAPY

Periodontal disease, characterized by the progressive inflammation and destruction of the supporting structures of the teeth, presents significant challenges for effective treatment due to the complex anatomy of periodontal pockets and the difficulty of achieving sustained local drug concentrations. Traditional systemic administration of antibiotics or anti-inflammatory agents often results in suboptimal drug levels at the site of infection and can cause systemic side effects. Magnetite (Fe_3O_4) nanoparticles offer a promising solution as localized drug delivery vehicles. Their superparamagnetic properties allow precise guidance to targeted regions within the oral cavity using externally applied magnetic fields, enabling higher drug accumulation specifically at diseased sites while minimizing systemic exposure [12].

Researchers synthesized **Fe_3O_4 magnetic nanoparticles coated with polydopamine (PDA) and loaded with minocycline** for targeted periodontal delivery. Under an external magnetic field, this platform facilitated deep penetration into periodontal pockets and biofilms. In a **rat periodontitis model**, the magnetic targeting enhanced antibiotic delivery, significantly reduced bacterial counts (*S. sanguinis*, *F. nucleatum*, *P. gingivalis*), suppressed pro-inflammatory cytokines (IL-1 β , IL-6, TNF- α), and improved periodontal inflammation compared to non-targeted treatments [17].

Fe_3O_4 nanoparticles can be functionalized with a variety of therapeutic agents, including antibiotics, anti-inflammatory drugs, and tissue-regenerative growth factors, to create multifunctional drug delivery platforms. These nanoparticles provide controlled and sustained release of the loaded drugs, maintaining therapeutic concentrations over extended periods. This feature is particularly advantageous in the management of periodontitis, where repeated application or frequent dosing is otherwise required. Additionally, surface modifications of magnetite nanoparticles with biocompatible polymers or ligands enhance their stability, mucoadhesion, and interaction with periodontal tissues, further improving treatment efficacy and minimizing potential cytotoxicity [1].

Recent studies on magnetically controlled release systems have demonstrated promising outcomes in periodontal therapy. In preclinical models, Fe_3O_4 -based nanocarriers have significantly reduced bacterial load, alleviated inflammation, and promoted tissue regeneration compared to conventional drug administration. The ability to precisely target and release drugs in response to magnetic stimuli introduces a level of precision and personalization in dental therapy that is difficult to achieve with standard approaches. Future research should focus on optimizing nanoparticle design, evaluating long-term safety, and conducting large-scale clinical trials to translate these findings into routine clinical practice. By integrating Fe_3O_4 nanoparticles into advanced periodontal treatment strategies, precision and efficacy in managing complex oral diseases can be substantially improved [18].


APPLICATIONS IN DENTAL IMPLANTS AND RESTORATIVE MATERIALS

The success of dental implants and restorative materials largely depends on their ability to integrate with surrounding tissues while resisting microbial colonization and mechanical wear. In implant dentistry, surface modification is a key strategy for promoting osseointegration—the direct structural and functional connection between living bone and the implant surface. Conventional titanium implants,

while biocompatible and mechanically strong, can sometimes face challenges such as delayed bone healing, bacterial colonization, and peri-implant infections. Incorporation of magnetite (Fe_3O_4) nanoparticles into implant coatings and restorative composites has emerged as a promising approach to address these limitations by providing multifunctional benefits that enhance both biological and mechanical performance [19].

Enhancement of Osteoblast Adhesion and Proliferation

Fe_3O_4 nanoparticles have been shown to positively influence osteoblast behavior, which is critical for successful osseointegration. Surface-modified implants with Fe_3O_4 nanoparticles provide nanoscale topography and bioactive cues that promote osteoblast adhesion, proliferation, and differentiation. The magnetic properties of Fe_3O_4 can also stimulate mechanotransduction pathways in bone cells, enhancing cellular activity and accelerating bone formation around the implant. Studies have reported improved bone-implant contact and faster healing in preclinical models when Fe_3O_4 nanoparticle coatings are applied, highlighting their potential to reduce recovery times and improve long-term implant stability [20].

Figure 2. Potential applications of metal nanoparticles in dental treatment [21].

Several recent studies have provided concrete evidence that Fe_3O_4 nanoparticles enhance osteoblast adhesion, proliferation, and overall osteogenic activity, which are critical for successful osseointegration of implants. For example, Fe_3O_4 nanoparticles incorporated into hydroxyapatite scaffolds and applied under external magnetic stimulation were shown to significantly promote osteogenic differentiation and new bone matrix mineralization, activating mechanotransduction pathways such as Piezo1 and MAPK in preclinical models of bone repair [22].

Antibacterial and Anti-Peri-Implantitis Effects

In addition to promoting bone regeneration, Fe_3O_4 nanoparticles provide significant antimicrobial benefits. Their intrinsic antibacterial activity, combined with the potential for magnetic guidance, can inhibit the adhesion and growth of key oral pathogens on implant surfaces. This is particularly important in preventing peri-implantitis, a common cause of implant failure characterized by inflammation and bone loss around the implant. Nanoparticle-based coatings can effectively reduce bacterial colonization, biofilm formation, and inflammatory responses, contributing to enhanced implant longevity and improved patient outcomes [11,23].

Improvement of Mechanical Properties

Beyond biological effects, the incorporation of Fe_3O_4 nanoparticles into restorative composites enhances their mechanical performance. Nanoparticle reinforcement improves hardness, wear resistance, and fracture toughness of dental materials, making them more durable under the high occlusal forces encountered in the oral environment. This combination of enhanced mechanical strength, bioactivity, and antimicrobial properties makes Fe_3O_4 nanoparticle-integrated dental materials highly promising for both implant coatings and restorative applications, offering multifunctional solutions that address several limitations of conventional materials simultaneously.

In conclusion, Fe_3O_4 nanoparticles represent a versatile tool in dental implants and restorative materials. By simultaneously promoting bone regeneration, providing antibacterial protection, and improving mechanical properties, these nanoparticles can significantly enhance implant success rates and the longevity of restorative materials. Continued research and clinical validation are necessary to optimize nanoparticle coatings and ensure their safe and effective translation into routine dental practice [24,25].

HYPERTHERMIA AND ENDODONTIC APPLICATIONS

Magnetite (Fe_3O_4) nanoparticles offer unique opportunities in endodontics through their ability to generate localized heat when exposed to an alternating magnetic field, a phenomenon referred to as magnetic hyperthermia. This property has been extensively investigated for its potential to eliminate persistent bacterial infections in challenging areas such as root canals and peri-implant tissues. Conventional endodontic treatments, including mechanical debridement and chemical irrigants, often fail to completely eradicate bacteria residing deep within dentinal tubules or biofilm-protected niches. Magnetic hyperthermia presents a minimally invasive strategy to target these resistant pathogens while preserving the surrounding healthy tissue [26-31].

Mechanism of Magnetic Hyperthermia

When Fe_3O_4 nanoparticles are subjected to an alternating magnetic field, their superparamagnetic behavior leads to rapid magnetic moment reversal, producing localized heat through Néel and Brownian relaxation processes. This controlled thermal effect can raise the temperature within infected sites to levels sufficient to disrupt bacterial cell membranes, denature proteins, and inactivate metabolic pathways, resulting in efficient bacterial killing. Importantly, the heat generation can be finely tuned by adjusting nanoparticle concentration, field strength, and exposure duration, allowing selective targeting of infected areas without causing thermal damage to adjacent tissues [32].

Applications in Endodontics and Peri-Implant Therapy

In endodontic applications, magnetic hyperthermia has been explored as an adjunctive method for sterilizing root canals, particularly in cases of persistent infections or retreatments where conventional methods are insufficient. Preclinical studies have demonstrated that Fe_3O_4 nanoparticles can penetrate complex root canal systems and effectively eradicate bacteria such as *Enterococcus faecalis*, a pathogen commonly associated with treatment failure. Similarly, in peri-implant tissues, magnetic hyperthermia can be applied to reduce bacterial colonization around implants, potentially lowering the incidence of peri-implantitis and improving long-term implant stability.

Advantages and Future Perspectives

The use of Fe_3O_4 nanoparticles for hyperthermia in dentistry offers several advantages over traditional antimicrobial

approaches. It provides a localized, non-invasive, and controllable method of bacterial eradication while reducing the need for systemic antibiotics, thereby minimizing side effects and the risk of antibiotic resistance. Future research should focus on optimizing nanoparticle delivery systems for deep tissue penetration, integrating hyperthermia with multifunctional nanoparticle platforms (e.g., drug-loaded or surface-modified Fe_3O_4), and conducting rigorous clinical trials to assess efficacy and safety. By combining magnetic hyperthermia with conventional endodontic procedures, Fe_3O_4 nanoparticles have the potential to significantly enhance infection control and improve treatment outcomes in modern dentistry [26].

REGENERATIVE DENTISTRY

Regenerative dentistry focuses on restoring the structure and function of damaged dental tissues by harnessing the body's innate healing potential and applying advanced biomaterials. Traditional restorative approaches, such as fillings or implants, often replace lost tissue rather than promoting true biological regeneration. In this context, magnetite (Fe_3O_4) nanoparticles have emerged as multifunctional tools for tissue engineering and regenerative therapies, offering both structural and bioactive advantages when incorporated into scaffolds, hydrogels, or composite biomaterials.

Integration into Scaffolds and Hydrogels

Fe_3O_4 nanoparticles can be embedded within biocompatible scaffolds and hydrogels to create multifunctional matrices that support tissue regeneration. These nanoparticles improve scaffold mechanical strength, enhance porosity, and provide sites for growth factor immobilization, which collectively facilitate cell attachment and proliferation. In addition, their magnetic properties enable remote modulation of the scaffold environment through external magnetic fields, providing dynamic stimuli that can influence cellular behavior. Such nanocomposite scaffolds have been successfully used in preclinical models to promote the regeneration of alveolar bone, periodontal ligament, and dentin-pulp complexes, demonstrating their potential for advanced regenerative dental therapies [33].

Magnetic Stimulation of Stem Cells

One of the most remarkable features of Fe_3O_4 nanoparticles in regenerative dentistry is their ability to mediate magnetic stimulation of stem cells. When exposed to external magnetic fields, Fe_3O_4 nanoparticles can influence stem cell migration, differentiation, and mineralization through mechanotransduction pathways. This controlled

magnetic stimulation enhances osteogenic and odontogenic differentiation of mesenchymal stem cells, accelerates mineral deposition, and improves tissue maturation. Such effects are particularly valuable for periodontal regeneration, where coordinated reconstruction of bone, ligament, and connective tissue is required, and for dentin-pulp regeneration, where vascularization and innervation must be reestablished [34].

Advantages and Future Directions

The use of Fe_3O_4 nanoparticles in regenerative dentistry provides multiple advantages, including localized stimulation, enhanced scaffold performance, and the potential for multifunctional therapies combining antimicrobial, osteoinductive, and drug delivery capabilities. Future research should aim to optimize nanoparticle size, surface functionalization, and magnetic field parameters to maximize regenerative outcomes. Additionally, integrating Fe_3O_4 nanoparticles with bioactive molecules, growth factors, or gene delivery systems could further enhance tissue-specific regeneration. Clinical translation will require rigorous safety evaluations, long-term *in vivo* studies, and the development of standardized protocols to ensure reproducible and effective regenerative outcomes. Overall, magnetite nanoparticles hold significant promise as key components in next-generation regenerative dental therapies.

DIAGNOSTIC AND IMAGING APPLICATIONS

Magnetite (Fe_3O_4) nanoparticles have garnered significant attention in the field of biomedical imaging due to their superparamagnetic properties and biocompatibility. One of the most well-established applications of Fe_3O_4 nanoparticles is as contrast agents in magnetic resonance imaging (MRI), where they enhance signal resolution and enable the visualization of tissues with high specificity. In dentistry, these properties can be leveraged to improve diagnostic accuracy, allowing clinicians to detect early-stage disease and monitor treatment outcomes with precision.

MRI Contrast Enhancement in Dental Applications

Fe_3O_4 nanoparticles act as efficient T2-weighted MRI contrast agents due to their strong magnetic responsiveness, which alters the relaxation times of surrounding water protons. In the oral cavity, this capability can be utilized to image soft tissues, identify inflammatory lesions, and assess the health of the temporomandibular joint. Their nanoscale size allows them to penetrate tissue microenvironments, providing detailed structural and pathological information

that is difficult to obtain with conventional imaging modalities. Moreover, functionalization of the nanoparticle surface with targeting ligands or antibodies enables selective accumulation in diseased regions, enhancing diagnostic sensitivity and specificity [35,36].

Biosensing and Early Disease Detection

Beyond imaging, Fe_3O_4 nanoparticles can be integrated into biosensors for early detection of oral diseases. Surface-functionalized nanoparticles can bind to specific biomarkers associated with periodontal disease, dental caries, or oral cancer, enabling rapid and sensitive detection even at low concentrations. The combination of magnetic properties and surface functionalization facilitates signal amplification and quantitative analysis, providing a powerful tool for preventive dentistry. Such biosensing platforms could allow clinicians to identify pathological changes before clinical symptoms appear, thereby improving patient outcomes through early intervention [37].

Advantages and Future Perspectives

The application of Fe_3O_4 nanoparticles in dental diagnostics offers several advantages, including non-invasive imaging, enhanced resolution, and the ability to perform targeted and quantitative assessments. Future research is expected to focus on multifunctional nanoparticles that combine imaging, biosensing, and therapeutic capabilities, creating theranostic platforms for personalized dental care. Additionally, studies on nanoparticle safety, clearance, and long-term biocompatibility will be critical for clinical translation. By integrating Fe_3O_4 nanoparticles into dental imaging and diagnostic protocols, clinicians can achieve more accurate disease detection, improved monitoring of therapeutic interventions, and ultimately, better patient care outcomes.

ENGINEERING AND STRATEGIC FRAMEWORKS FOR DENTAL NANOMATERIALS

The successful integration of magnetite nanoparticles (Fe_3O_4 NPs) into dental therapies requires a multidisciplinary approach that addresses computational modeling, structural reliability, and commercial strategy.

I. Computational Modeling and Simulation Environments

The study of Fe_3O_4 NPs at the atomic and molecular level requires high-performance simulation to understand their magnetic interactions and physicochemical properties. Researchers can refer to foundational work in

parallelization and multi-scale modeling (MSM) [38] to manage the high-complexity data involved in nanoparticle behavior. Furthermore, the use of **CUDA-based HPC setups** [39] provides a specific framework for simulating nanoscale phenomena—such as the disruption of dental biofilms or the transport of drug-loaded Fe_3O_4 NPs through dentinal tubules—by leveraging massively parallel processing architectures.

II. Structural Reliability of Functionalized Materials

A critical challenge in regenerative dentistry and dental implants is ensuring the stability of surface-functionalized materials. The literature on the **reliability analysis of functionalized nano-structures** [40] serves as a vital reference for predicting how surface-modified Fe_3O_4 NPs maintain their integrity under the biochemical stresses of the oral cavity. For the development of "smart" dental scaffolds, the application of **distributive computing and MATLAB-based reliability modeling** [41] offers a methodology to ensure these nano-systems perform consistently during long-term antimicrobial or bone-regeneration treatments.

III. Reliability and Strategic Commercialization

Transitioning Fe_3O_4 NPs into next-generation dental materials involves significant engineering and economic planning. Mathematical frameworks developed for the **reliability of nano-nodes and sensor networks** [42] can be adapted to model the performance of nanoparticle-integrated dental resins or implant coatings over time. Finally, the literature suggests that the commercial viability of such dental innovations can be analyzed through **strategic decision-making and game theoretic approaches** [43]. This allows researchers and industry leaders to assess the competitive landscape of the nanotechnology market, ensuring that Fe_3O_4 -based products are both scientifically sound and commercially feasible for clinical adoption.

BIOCOMPATIBILITY, TOXICITY, AND SAFETY CONSIDERATIONS

Although magnetite (Fe_3O_4) nanoparticles are generally recognized for their biocompatibility, their safety profile in dental applications depends on multiple factors, including particle size, shape, concentration, surface chemistry, and duration of exposure. Smaller nanoparticles, while advantageous for enhanced cellular interaction and improved therapeutic performance, can exhibit higher reactivity with biological systems, potentially leading to oxidative stress, inflammation, or cytotoxic effects if not carefully controlled. The surface properties of Fe_3O_4

nanoparticles play a pivotal role in modulating these effects; functionalization with biocompatible coatings such as polyethylene glycol (PEG), chitosan, silica, or proteins can significantly reduce cytotoxicity, prevent aggregation, enhance hemocompatibility, and allow for targeted delivery of therapeutic agents.

Comprehensive evaluation of Fe_3O_4 nanoparticle safety requires both in vitro and in vivo studies. In vitro assays, including cytotoxicity tests, hemolysis evaluations, and oxidative stress measurements, provide essential insights into cellular responses to nanoparticles, while in vivo studies assess biodistribution, metabolism, clearance, and potential systemic toxicity. For dental applications, it is especially important to investigate interactions with oral tissues, bone, and the immune system, ensuring that prolonged or repeated exposure does not result in adverse effects. Additionally, potential accumulation in organs such as the liver, spleen, or kidneys must be monitored, particularly when nanoparticles are administered repeatedly or over long periods.

To facilitate safe clinical translation, careful optimization of synthesis, particle size, surface functionalization, and dosing protocols is essential. Standardized production and surface modification strategies can maximize therapeutic benefits while minimizing risks, and adherence to regulatory guidelines ensures rigorous preclinical evaluation and documentation of nanoparticle safety profiles. By addressing these considerations, Fe_3O_4 nanoparticles can be effectively and safely incorporated into dental therapies, offering multifunctional benefits for antimicrobial activity, drug delivery, tissue regeneration, and imaging, while maintaining patient safety and long-term treatment success [44,45].

CHALLENGES AND FUTURE PERSPECTIVES

Despite the remarkable potential of magnetite (Fe_3O_4) nanoparticles in enhancing dental materials and treatments, several challenges remain that limit their translation from laboratory research to routine clinical applications. One of the foremost concerns is the long-term safety and biodegradation of these nanoparticles in the human oral environment. While short-term in vitro and in vivo studies have demonstrated biocompatibility, the prolonged effects of Fe_3O_4 nanoparticles, including potential cytotoxicity, oxidative stress, and accumulation in oral tissues, are not yet fully understood. Addressing these safety concerns through comprehensive toxicological studies is essential to ensure that their use does not pose unintended health risks to patients over extended periods.

Another significant challenge lies in the standardization of nanoparticle synthesis, characterization, and incorporation into dental materials. Variability in particle size, shape, surface functionalization, and magnetic properties can influence both the efficacy and safety of the nanoparticles. This lack of uniformity complicates reproducibility between laboratories and hinders the establishment of clear clinical guidelines. Moreover, the integration of Fe_3O_4 nanoparticles into existing dental composites, adhesives, and coatings requires meticulous optimization to maintain the mechanical, aesthetic, and functional properties of conventional dental materials. Overcoming these technical hurdles is crucial for creating reliable, high-performance nanocomposites suitable for clinical practice.

Looking forward, the future of magnetite nanoparticles in dentistry appears promising if research focuses on multifunctional applications, rigorous clinical evaluation, and advanced technological integration. Development of multifunctional nanocomposites, capable of providing antimicrobial, remineralization, and imaging functionalities simultaneously, could revolutionize preventive and restorative dentistry. Large-scale clinical trials are necessary to validate laboratory findings, optimize dosing, and evaluate patient outcomes. Additionally, integrating Fe_3O_4 nanoparticles with digital dentistry and smart technologies, such as magnetic-guided drug delivery or real-time monitoring systems, could pave the way for personalized, minimally invasive dental care. By addressing these challenges, magnetite nanoparticles have the potential to become a transformative tool in modern dentistry.

CONCLUSIONS

Magnetite (Fe_3O_4) nanoparticles represent a highly versatile and multifunctional class of nanomaterials with strong potential to advance modern dentistry. Their superparamagnetic behavior, high surface area, tunable surface chemistry, and generally favorable biocompatibility enable diverse applications, including antimicrobial and anti-biofilm strategies, targeted and sustained drug delivery, regenerative therapies, hyperthermia-assisted infection control, and diagnostic imaging. By enabling localized, controllable, and multifunctional therapeutic action, Fe_3O_4 nanoparticles effectively address key limitations of conventional dental treatments, such as incomplete biofilm eradication, systemic drug-related side effects, and limited regenerative outcomes.

However, most of the currently available evidence is derived from in vitro studies and small-scale preclinical animal

models, while robust human clinical data remain scarce. Variability in nanoparticle size, coating, magnetic behavior, and dosing further complicates cross-study comparison and clinical translation. In addition, long-term safety, biodistribution, clearance, and potential cumulative effects in oral tissues have not yet been comprehensively established.

Future research should therefore prioritize standardized safety and characterization protocols aligned with regulatory requirements, as well as well-designed randomized clinical trials to evaluate efficacy, toxicity, and long-term outcomes in dental patients. Addressing these gaps will be essential for translating laboratory-scale successes into safe, effective, and clinically approved dental nanotherapies. With continued interdisciplinary collaboration, Fe_3O_4 nanoparticles are well positioned to play a transformative role in next-generation, precision-driven, and patient-centered oral healthcare.

ACKNOWLEDGMENTS

None.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. Gronwald B, Kozlowska L, Kijak K, Lietz-Kijak D, Skomro P, Gronwald K, et al. (2023). Nanoparticles in dentistry—current literature review. *Coatings*. 13(1):102.
2. Yu Y, Li X. (2024). Current Application of Magnetic Materials in the Dental Field. *Magnetochemistry*. 10(7):46.
3. Russo T, Peluso V, Fucile P, De Santis R, Gloria A. (2021). Magnetism in dentistry: review and future perspectives. *Appl Sci*. 12(1):95.
4. Alavi SE, Malik L, Matti R, Al-Najafi F, Shahmabadi HE, Sharma K, et al. (2024). Bioresponsive nanotechnology in pediatric dental drug delivery. *Journal of Drug Delivery Science and Technology*. 93:105436.
5. Priyadarsini S, Mukherjee S, Mishra M. (2018). Nanoparticles used in dentistry: A review. *J Oral Biol Craniofac Res*. 8(1):58-67.
6. Zulfiqar N, Inam F, Javed S, Almashnowi MY, Qamar MA, et al. (2024). Magnetic Marvels: Comparative Synthesis and Characterization of Multifaceted Nanoscale Magnetic Particles for Innovative Applications. *J Nanomed Nanotechno*. 15(2):721.
7. Zulfiqar N, Shariatiour M, Inam F. (2024). Sequestration of chromium(vi) and nickel(ii) heavy metals from unhygienic water via sustainable and innovative magnetic nanotechnology. *Nanoscale Adv*. 6(1):287-301.
8. Zulfiqar N, Ali M, Inam F, Khawaja S, Raza HA, Khan F, et al. (2025). Synthesis of metal nanoparticles and their role in degradation of pesticides/herbicides: a review. *Discover Applied Sciences*. 7(6):558.
9. Zulfiqar N, Nadeem R, Musaimi OA. (2024). Photocatalytic Degradation of Antibiotics via Exploitation of a Magnetic Nanocomposite: A Green Nanotechnology Approach toward Drug-Contaminated Wastewater Reclamation. *ACS Omega*. 9(7):7986-8004.
10. Zulfiqar N, Ali MA, Rafique F, Umar A, Umer U, Inam F, et al. (2025). Sustainable Fabrication of Metal-doped rGO Nanocomposites for Photocatalytic Antibiotic Degradation in Aqueous Systems. *Advance in Sustainability*. 5(1):18-27.
11. Song W, Ge S. (2019). Application of Antimicrobial Nanoparticles in Dentistry. *Molecules*. 24(6):1033.
12. Higino T, França R. (2022). Drug-delivery nanoparticles for bone-tissue and dental applications. *Biomed Phys Eng Express*. 8(4):042001.
13. Bourgi R, Doumandji Z, Cuevas-Suárez CE, Ammar TB, Laporte C, Kharouf N, et al. (2025). Exploring the Role of Nanoparticles in Dental Materials: A Comprehensive Review. *Coatings*. 15(1):33.
14. Chen Y, Li Z, Wei Y, Guo X, Li M, Xia Y, et al. (2025). Effects of a Novel Magnetic Nanomaterial on Oral Biofilms. *International Dental Journal*. 75(2):1203-1212.
15. Li Y, Wang P, Liu Y, Wu X, Long G, Chen Y, et al. (2025). Fe3O4-Based Nanospheres with High Photothermal Conversion Efficiency for Dual-Effect and Mild Biofilm Eradication against Periodontitis. *ACS Appl Mater Interfaces*. 17(10):14832-14845.
16. Yin X, Zhao B, Chen L, Di X, Li B, Wang H, et al. (2025). Octahedral Fe3O4 Nanozymes Penetrate and Remove Biofilms on Implants via Photomagnetic Response. *Coatings*. 15(6):728.
17. Tong F, Wang P, Chen Z, Liu Y, Wang L, Guo J, et al. (2023). Combined Ferromagnetic Nanoparticles for Effective Periodontal Biofilm Eradication in Rat Model. *Int J Nanomedicine*. 18:2371-2388.

18. Neagu C, Cojocariu A, Zaharia C, Rominu M, Negruțiu M, Duma V-F, et al. (2022). The evaluation of dental adhesives augmented with magnetic nanoparticles. in Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology. SPIE. 12170. DOI:10.1117/12.2613382.
19. Craciunescu I, Ispas GM, Ciorita A, Leostean C, Illes E, Turcu RP. (2023). Novel Magnetic Composite Materials for Dental Structure Restoration Application. *Nanomaterials* (Basel). 13(7):1215.
20. Habib M, Horne DA, Hussein K, Coughlin D, Waldorff EI, Zhang N, et al. (2021). Magnetic Nanoparticles Synergize with Pulsed Magnetic Fields to Stimulate Osteogenesis In Vitro. *Tissue Eng Part A*. 27(5-6):402-412.
21. Umapathy VR, Natarajan PM, Sumathi Jones C, Bhuminathan S, Johnson WMS, Alagarsamy V, et al. (2022). Current trends and future perspectives on dental nanomaterials – An overview of nanotechnology strategies in dentistry. *Journal of King Saud University - Science*. 34(83):102231.
22. Zhang X, Wang Q, Zheng W, Li Z, Qu L, Tian Y, et al. (2025). Magnetic Fe3O4 Nanoparticles Modified Hydroxyapatite Whisker: A Novel Framework with Superior Osteogenic Efficacy. *Adv Sci (Weinh)*. 12(39):e09715.
23. Lu Z, Yu D, Nie F, Wang Y, Chong Y. (2023). Iron Nanoparticles Open Up New Directions for Promoting Healing in Chronic Wounds in the Context of Bacterial Infection. *Pharmaceutics*. 15(9):2327.
24. Ardeleanu M-C, Ciobica A. (2024). Iron--Oxide Nanoparticles for Dental Applications: A Review. *International Journal of Medical Dentistry*. 28(3):260-265.
25. Vasiliu S, Racovita S, Gugoasa IA, Lungan MA, Popa M, Desbrieres J. (2021). The Benefits of Smart Nanoparticles in Dental Applications. *Int J Mol Sci*. 22(5):2585.
26. Mathew DM, Pushpalatha C, Anandakrishna L. (2022). Magnetic nanoparticles: a novel adjunct for dentistry. *Materials Today: Proceedings*. 50(9):173-180.
27. Vilas-Boas V, Carvalho F, Espiña B. (2020). Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. *Molecules*. 25(12):2874.
28. Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. (2022). Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. *Nanomaterials* (Basel). 12(11):1807.
29. Szwed M, Marczak A. (2024). Application of Nanoparticles for Magnetic Hyperthermia for Cancer Treatment-The Current State of Knowledge. *Cancers (Basel)*. 16(6):1156.
30. Sun R, Chen H, Zheng J, Yoshitomi T, Kawazoe N, Yang Y, et al. (2023). Composite Scaffolds of Gelatin and Fe3 O4 Nanoparticles for Magnetic Hyperthermia-Based Breast Cancer Treatment and Adipose Tissue Regeneration. *Adv Healthc Mater*. 12(9):e2202604.
31. Shubayev VI, Pisanic TR 2nd, Jin S. (2009). Magnetic nanoparticles for theragnostics. *Adv Drug Deliv Rev*. 61(6):467-477.
32. Zulfiqar N, Asif M, Tayyab HS, Shaukat M, Mehmood H, Inam F, et al. (2023). Nano-magnetism unleashed: Targeted healing in yoga and physiotherapy with magnetic nanoparticles. *Nano and Medical Materials*. 3(2):1377-1377.
33. Marović N, Ban I, Maver U, Maver T, et al. (2023). Magnetic nanoparticles in 3D-printed scaffolds for biomedical applications. *Nanotechnology Reviews*. 12(1):20220570.
34. Semeano AT, Tofoli FA, Corrêa-Velloso JC, de Jesus Santos AP, Oliveira-Giacomelli Á, Cardoso RR, Pessoa MA, et al. (2022). Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells. *Stem Cell Rev Rep*. 18(4):1337-1354.
35. Reda R, Zanza A, Mazzoni A, Cicconetti A, Testarelli L, Di Nardo D. (2021). An Update of the Possible Applications of Magnetic Resonance Imaging (MRI) in Dentistry: A Literature Review. *J Imaging*. 7(5):75.
36. Demirturk Kocasarac H, Geha H, Gaalaas LR, Nixdorf DR. (2018). MRI for Dental Applications. *Dent Clin North Am*. 62(3):467-480.
37. Zhang X, Lang B, Yu W, Jia L, Zhu F, Xue Y, et al. (2023). Magnetically induced anisotropic conductive hydrogels for multidimensional strain sensing and magnetothermal physiotherapy. *Chemical Engineering Journal*. 474:145832.
38. Pathak R, Joshi S. (2009). Implementation of parallelization and nano simulation using multi-scale modeling on various HPC setups. *2009 Innovative Technologies in Intelligent Systems and Industrial Applications*. DOI: 10.1109/CITISIA.2009.5224204.
39. Pathak R, Joshi S. (2009). Multi-scale modeling of nano scale phenomenon using CUDA based HPC setup. p. 1-5.

40. Shihhare S, Joshi S, Ahmed S. (2009). Reliability analysis of functional CNT. *Chemistry Central Journal*. 3(1):35.

41. Pathak R, Joshi S, Mishra DK. (2009). Distributive computing for reliability analysis of MEMS devices using MATLAB. *Proceedings of the International Conference on Advances in Computing, Communication and Control*. Association for Computing Machinery: Mumbai, India. pp. 246-250.

42. Joshi S, Pathak R, Ahmed S. (2009). Wireless Sensor Network: Intricate modeling and analysis of CNT and MEMS based sensor nodes. *2009 2nd International Workshop on Electron Devices and Semiconductor Technology*. DOI:10.1109/EDST.2009.5166129.

43. Pathak R, Joshi S, Ludhiyani A. (2010). Strategic decision-making and game theoretic approach for the commercialization of nanotechnology. *Intellectual economics*. 2(8):47-56.

44. Alsuraiifi A. (2020). Metallic nanoparticles in dental biomaterials: A review. *International Journal of Medical Sciences*. 3(1):27-37.

45. Crăciunescu I, Ispas GM, Ciorita A, Turcu RP. (2025). Functionalized Magnetic Nanomaterial Based on SiO₂/Ca(OH)₂-Coated Clusters Decorated with Silver Nanoparticles for Dental Applications. *Crystals*. 15(7):615.