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ABSTRACT
External factors in mutual cooperation with internal factors initiate 
and progress breast malignancies. One of those overwhelming major 
factors, affecting initiation, progression, therapy-resistance, recurrence 
and metastasis in cancer, is tumor microenvironment (TME). TME is 
described by hypoxia, vascular abnormal features, low extracellular pH 
(pHe), and increased interstitial fluid pressure which are to some extent 
unique to solid tumors (35). Breast cancer (BC) is the most universal 
fatal tumor and the second reason of death, after heart diseases, among 
women worldwide. External factors in mutual cooperation with internal 
factors initiates and progresses breast malignancies including mainly 
tumor micro environment. Tumor stroma is comprised of extracellular 
matrix (ECM), and stromal cells. In this article we extant a review on 
the main methods of breast cancer imaging that rely on molecular 
characteristics of solid tumor microenvironment for early and precise 
detection of breast cancer. There are 3 indispensable methods which 
have important role in detecting role of tumor microenvironment in 
progression of breast cancer. PET, MRI and Optical Imaging methods have 
been discussed through diverse detection of tumor microenvironment 
components using their numerous capabilities.
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ABBREVIATIONS 

BC: Breast Cancer; MRI: Magnetic Resonance Imaging; PET: Positron 
Emission Tomography; CT: Computed Tomography; MRA: Magnetic 
Resonance Angiography; TME: Tumor Microenvironment; OI: Optical 
Imaging; ECM: Extracellular Matrix; CAM: Cell Adhesion Molecule; VEGF: 
Vascular Endothelial Growth Factor; TNF: Tumor Necrosis Factor; NCPs: 
Nanoscale Coordination Polymers; FRET: Fluorescence Resonance 
Energy Transfer; BPCAs: Blood Pool Agents; ECF: Extracellular Fluid; 
MMPs: Matrix Metalloproteinases; DCE: Dynamic Contrast-Enhanced; 
OCAs: Oral Contrast Agents; SLNs: Sentinel Lymph Nodes; FDA: Food and 
Drug Administration; MEMRI: Manganese Enhanced MRI; SMA: Smooth 
Muscle Actin; FAP: Fibroblast-Activation Protein; TOLD: Tissue Oxygen 
Level Dependent; BOLD: Blood Oxygen Level Dependent.
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INTRODUCTION

Breast cancer (BC) is the most common malignant tumor 
and the second cause of death, after heart diseases, among 
women worldwide [1-3]. More than one million women 
are affected by BC globally, and also it is the cause of more 
than 400,000 deaths yearly [4]. Premature diagnosis and 
screening of breast cancer improve survival rate and result 
in decreased mortality rate [5]. Due to inter and intra 
heterogeneity of BC which is detectable by high level of 
phenotype and genotype diversity in tumor components 
like as cells and microenvironment, treatment plan decision 
is proving to become more complicated and prognosis can 
vary among patients [6,7]. It is proven that tumor diversity 
and aggressiveness are strongly linked with the nature of 
microenvironmental properties [8]. Therefore, in order to 
select appropriate therapy, not only requires the clinical 
and historical status of the patient but also the molecular 
features of the tumor components. BC has been categorized 
into four subtypes including luminal A, luminal B, HER2 
(human epidermal growth factor receptor 2) positive and 
basal (known as, triple negative) [9,10]. The etiology of BC is 
complicated and several factors are involved in causation of 
tumor evolution [11,12]. Vast majority studies are evidence 
of involving two risk factors in BC including intrinsic and non-
intrinsic factors. The former refers to randomly unavoidable 
driver mutations in DNA replication causing genetic 
diversity in different individuals at various rates. The letter 
is divided into two subgroups classifying to endogenous 
and exogenous factors. Endogenous factors such as immune 
response, hormones, genetic susceptibility and blood 
supply could be considered as tumor microenvironment/
tumor cells niche which actively participate in fate of cells. 
Lifestyle, radiation, viruses and chemical carcinogens play 
exogenous factors role in this category [13-15]. Therefore, 
external factors in mutual cooperation with internal 
factors initiate and progress breast malignancies. One of 
those overwhelming major factors, affecting initiation, 
progression, therapy-resistance, recurrence and metastasis 
in cancer, is tumor microenvironment (TME). Mechanisms 
of the tumor microenvironment, comprising cellular 
(macrophage, fibroblast, endothelial, mesenchymal, 
immune cells), and cellular (extra-cellular matrix (ECM) 
molecules, vascular and lymphatic vessel) are increasingly 
recognized as a hallmark in cancer biology [16-18]. The 
ECM of TME with abundant effective biomarkers on tumor 
growth and invasion like as ECM proteins and proteases 
[19], physiological microenvironment comprising hypoxia 
(oxygen tension), acidity (PH potential), interstitial pressure 
and also tumor vascular biomarkers such as cell adhesion 
molecule (CAM) [20], vascular endothelial growth factor 
(VEGF), tumor necrosis factor (TNF) [21] could be targeted 

on molecular imaging [22]. In some solid tumors, comprising 
the breast and pancreas, up to 90% of the tumor mass is 
TME [22]. Participation of complex and heterogeneous 
TME in cancer progression came out from pioneering 
researches that described the ‘seed’ (cancer cell) link to its 
‘soil’ (TME) [19]. Actually, molecular imaging technologies 
integrate molecular biology and anatomical information and 
conventional imaging method. Therefore, it is able to state 
a fundamental role in clinical diagnosis and treatment of 
cancer [23]. Surprisingly, molecular imaging not only detects 
cancer, even if it is too small, but it also destroys the cancer 
micro foci during surgery, resulting in no cancer tissue 
remains [21]. In spite of various treatment options such as 
surgery, chemotherapy, radiation, endocrine and targeted 
therapy, several recurrence and failure exist in breast cancer, 
leading to metastasis and death [24]. Using imaging tools 
and understanding the molecular mechanisms that drive 
tumor resistance are absolutely vital to prevent invasion 
and metastasis in breast cancer [25,26]. Cancer molecular 
imaging has been categorized as imaging modalities and 
imaging probes or contrast agents, which are applied to 
target, detect and cancer biomarkers [27,28]. Regarding 
to importance of imaging agents which are crucial for 
exact molecular imaging, their design and development 
such as specificity, high sensitivity, and low toxicity must 
be considered [29]. Currently, in order to designing novel 
therapies, targeted cancer therapy main focuses are on the 
biomarkers of either TME or cancer cells that reciprocal 
interactions fuel the developmental process of tumor 
[30,31]. Hence, molecular imaging of the TME might improve 
efficiency of novel therapies and facilitate the recognition of 
pre-metastatic niche [32,33]. Regarding the key role of TME 
in breast cancer advancement and the limitation of imaging 
modalities, multimodality imaging combining both macro- 
and microscopic changes to study TME is needed for tumor 
masses imaging and successful treatment of cancer [34]. 
Heterogeneity property is recognized as a hallmark of breast 
tumor, so there is an urgent need to understand the molecular 
mechanism and pathways that take part in the diversity 
for personalized medicine in BC patients. In this article we 
extant a short review on the main methods of breast cancer 
imaging that rely on molecular characteristics of solid tumor 
microenvironment for early and precise detection of breast 
cancer.

TME and Imaging details of TME through three different 
modality

TME

TME is described by hypoxia, vascular abnormal features, 
low extracellular pH (pHe), and increased interstitial fluid 
pressure which are to some extent unique to solid tumors 
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[35]. Tumor stroma is composed of extracellular matrix 
(ECM), and stromal cells. Tumor stromal cells comprising 
fibroblasts, endothelial cells, pericytes, and numerous 
immune cells, such as macrophages, neutrophils, mast cells, 
myeloid progenitors, and lymphocytes, in neighborhood 
of cancer cells which have significant accomplishment 
in reprogramming of stromal cells [36] and remodeling 
of ECM [37]. Compelling evidence extensively suggests 
that the tumor stroma itself transforms in the course of 
tumor advancement. On the other hand, tumor stroma is 
able to reform tumor metabolism, progression, treatment 
response, and even can affect cell signaling pathways and 
cellular differentiation process [38,39]. For visualizing and 
estimating detailed characteristics of the TME as inseparable 
part of tumor, non-invasive multimodal imaging methods 
have been developed in preclinical cancer [40].

Imaging modalities contrast agents

PET imaging needs use of radioactive contrast agents to 
achieve images. Some agents applied for PET imaging 
prepare data about tissue metabolism or some other 
accurate molecular activity. The emitted positron strikes 
with a neighboring electron to produce two 511 KeV gamma 
rays coarsely 180 apart. PET contrast agents and their 
details including chemical name and application are shown 
in the Tab1 below. 

It is based on this physical chief and the positron equivalent 
signals that the point source of the gamma rays can be 
expected, by using a coincident circuit for detectors 180 
apart [41,42]. In other words, PET imaging uses radioactive 
isotopes that release positrons, such as 18F, 15O, 13N, or 
11C; whereas SPECT imaging uses isotopes that emit gamma 
photons, such as 99mTc, 123I, or 125I. Positrons travel short 
expanses in tissues, in the order of milli meters, and strike 
with surrounding electrons (annihilation), producing two 
high energy gamma rays that travel in opposite directions 
to one another and are detected by the PET camera [43]. 
Currently, most of the clinical imaging agents encompassing 
MRI and CT contrast agents, and PET tracers are small 
molecules which are used because of their low cost, well-
defined structure, and good safety profiles. Specificity and 
sensitivity are the noteworthy parameters in designing the 
imaging agents for molecular imaging of TME biomarkers 
[22]. Both PET and SPECT provide data about physiological 
activity, such as glucose metabolism, blood flow, perfusion, 
and oxygen consumption. However, they shortage anatomical 
detail, which has led to the development of hybrid systems 
that syndicate PET and SPECT with other image modalities 
such as CT and MRI [43]. The first type of optical imaging 
agents is endogenous optical contrast which researches in 
biomedical optics have long due to the fact used spectroscopy 

and imaging methods to scrutinize the absorption, scattering, 
fluorescence, and polarization consequences of everyday 
and neoplastic tissues. Both morphological and biochemical 
discrepancies due to cancer enhancement have been proven 
to have an effect on the optical houses of the host tissue, 
inspiring the improvement of imaging structures to realize 
disorder using light-based measurements which is known as 
endogenous optical contrast. The second type is Non-specific 
exogenous contrast agents in which developing optical 
distinction with exogenous retailers has conservatively 
relied on non-specific small molecules in order to both 
existing extraordinary absorbing and fluorescent properties, 
or to set off detectable modifications in native tissue effects. 
A vary of fundamental dyes with absorbing or fluorescent 
homes comprising fluorescein, indocyanine green, cresyl 
violet acetate, toluidine blue, and Lugol’s iodine are 
presently used in scientific screening [44]. Non-specific 
fluorochromes or phosphorescent nanoscale coordination 
polymers (NCPs) with unprecedentedly high dye loadings 
were coated with thin silica shells to tune the dye launch 
kinetics. Supplementary functionalization of the NCP/silica 
particles with poly ethylene glycol (PEG) and PEG-anisamide 
heightened their biocompatibility and concentrated on 
capability, enabling cancer-specific imaging of human lung 
most cancers H460 cells [45]. Phosphorescent Nanoscale 
Coordination Polymers (NCPs) with unprecedentedly high 
dye loadings were coated with thin silica shells to tune the 
dye release kinetics. Supplementary functionalization of 
the NCP/silica particles with poly ethylene glycol (PEG) 
and PEG-anisamide heightened their biocompatibility and 
targeting capability, permitting cancer-specific imaging 
of human lung cancer H460 cells [46]. Bright fluorescent 
nanoparticles or Fluorescent cross-linked nanoparticles 
with mutable fluorophore loading amounts, locations, and 
particle sizes have been manufactured from sequential 
one-pot functionalization/cross-linking of block copolymer 
micelles with amine-terminated dye and cross-linker 
molecules, by reductive amination and amidation. The 
fluorescence quantum yield and brightness of these 
nanoparticles had been assessed with the aid of steady-
state and dynamic fluorescence methods. The consequences 
validate that the quantum yield and brightness of the 
fluorescent nanoparticles correlated straight with the range 
of dyes/nanoparticle and the nanoparticle size. A strategy 
to amplify the fluorescence brightness of nanoparticles 
with fluorescein and near-infrared dyes is proposed [47]. 
Molecular-specific exogenous contrast agents has allowed 
imaging of reporter gene expression at macroscopic and 
microscopic scales, with good sized impact on mobile phone 
lifestyle and animal research [48,49]. Cancer biomarkers 
are continuously being recognized by using molecular 
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profiling studies, and embody particular proteins, cell 
surface receptors, and enzymes. Organic fluorophores, steel 
nanoparticles, and semiconductor quantum dots have all 
been inspected as optical reporters, either encompassing 
direct conjugation to the probe ligand, or indirect binding via 
a linker area [44]. MRI contrast agents are contrast agents 
who have been progressed to visualize the body structures 
internally in magnetic resonance imaging (MRI) and lead 
to increasing the contrast difference between normal and 
abnormal tissues. The route of administration, depends 
on the subject of interest, may be intravenously or orally. 
The first is suitable for GI tract scans and the second is 
more useful for most other scans. Also they omit through 
the kidneys in the body [50]. MRI contrast agents have 
been classified according to the magnetic properties into 
paramagnetic and super paramagnetic contrast agents. The 
paramagnetic contrast agents consist of dysprosium (Dy3+), 
the lanthanide metal gadolinium (Gd3+) and the transition 
metal manganese (Mn2+). The lanthanide ion gadolinium 
(III) is the most commonly used contrast agent in MRI 
[51]. The super paramagnetic contrast agents contain iron 
oxide and iron platinum particles [52,53]. Gadolinium-based 
contrast agents: paramagnetic are chemical substances that 
are used in MRI scans and do not contain iodine, so they are 

mostly safe and rarely cause an adverse effect or allergic 
reaction. Using gadolinium-based contrast agents, the quality 
of MR images are enhanced for diagnosing more accurately 
disease or abnormality by improving the visualization 
of specific organs, tissues, and blood vessels [54,55]. 
Gadolinium is the most usually used for enhancement of 
vessels in magnetic resonance angiography (MRA) and 
brain tumor enhancement related to the degradation of the 
blood–brain barrier [56]. Gadolinium contrast agents can 
be categorized by body compartment as extracellular fluid 
(ECF) agents, blood pool contrast agents (BPCAs) and organ-
specific agents [54,55,57,58]. Moreover, Extracellular fluid 
agents (intravenous contrast agents) are small molecular 
weight composites with nonspecific distribution in blood 
and extracellular space of the body. These compounds are 
designed to discriminate tumors, inflammation in imaging 
and also used for magnetic resonance angiography (MRA). 
A list of the ECF agents is presented in Table 2. Also Blood 
Pool Agents (BPCAS) are divided into macromolecular and 
low-molecular-weight agents and are used almost in MRA. 
A list of the BPCAS is presented in Table 3. Finally, Targeted/
organ-specific agents mostly improve the discrimination 
and diagnosis of hepatic lesions. A list of such compounds is 
presented in Table 4.

PET Contrast Agents Chemical Name Application

64Cu-ATSM N4-methylthiosemicarbazone Hypoxic Detection (tissue with low oxygen)

FDG 18F-fluorodeoxyglucose Metabolic activity of tissues Study tumor response to treatment

18F-fluoride - Modifications both in normal bone as well as bone tumors
Measure response to treatment

FLT 3'-deoxy-3'-[18F]fluorothymidine Identify growth in a primary tumor
Perceive tumor response to treatment

FMISO 18F-fluoromisonidazole Hypoxia (low oxygen) in tissues

Gallium - Inflammation, such as infection
Rapid cell division

Technetium-99m - Radiolabel many distinct regular radiopharmaceuticals in bone and heart scans

Table 1. PET scan contrast agents and their applications.

Table 2. ECF agents. ECF, extracellular fluid; Gd-DTPA, gadolinium (III) diethylene triamine pentaacetate; Gd-DOTA, 
gadoterate dotarem; Gd-DTPA-BMA, gadolinium 3-diethylenetriamine pentaacetate-bis (methylamide).

Short Name Generic Name Trade Name

Gd-DTPA Gadopentate dimeglumine Magnevist

Gd-DOTA Gadoterate meglumine Dotarem

Gd-DTPA-BMA Gadodiamide injection Omniscan

Gd-HP-DO3A Gadoteridol injection ProHance

Gd-DTPA-BMEA Gadoversetamide OptiMARK

Gd-DO3A-butrol Gadobutrol Gadovist

Gd-BOPTA Gadobenate dimeglumine MultiHance
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Manganese, in the form of manganese chelates or manganese-
based nanoparticles, is used as a contrast agent. Manganese 
chelates such as manganese dipyridoxyl diphosphate (Mn-
DPDP) have been used to detect liver lesions [59]. Manganese 
ion (Mn2+) as contrast agents have applications in animal 
studies, usually referred to as Manganese Enhanced MRI 
(MEMRI) [59]. Manganese is taken up by the liver cells 
and excreted into the bile, whereas the DPDP component 
is excreted by the kidneys [60]. Unfortunately research on 
Mn-based nanoparticles is at an early stage in comparison 
with other well-studied nanoparticles based on iron oxide 
[61]. Iron oxide: Superparamagnetic contrast agents are 
categorized into superparamagnetic iron oxide (SPIO) 
and ultrasmall superparamagnetic iron oxide (USPIO). 

Using SPIO and USPIO successfully resulted in diagnosis 
of hepatic tumors in some cases [52]. In spite of enormous 
improvement in nanotechnology which makes disease-
specific biomarkers visible at microscopic and molecular 
levels leading to greater attention as potential MRI contrast 
agents in other nanoparticles, iron oxide nanoparticles 
are still used in clinical practice [62]. Iron Platinum: 
Superparamagnetic particles specifically targeted human 
prostate cancer cells in vitro, and these results suggest that 
SIPPs may have a role as tumor-specific contrast agents. 
These contrast agents are still under investigation and have 
not yet been studied in humans [53]. In the United States, A 
list of Gd chelated contrast agents approved by the U.S. Food 
and Drug Administration (FDA) is presented in table 5.

Short Name Generic Name Trade Name

NC-100150 PEG-feron (USPIO) Clariscan

SH U 555 C Ferucarbotran (USPIO) Supravist

MS-325 Gadofosveset AngioMARK

Gadomer-17 - -

Gabofluorine-M - -

P792 Gadomelitol Vistarem

AMI-227 Ferumoxtran-10 (USPIO) Combidex

Gd-BOPTA Gadobenate dimeglumine MultiHance

Table 3. BPCAs. BPCAs, blood pool contrast agents; USPIO, ultrasmall super paramagnetic iron oxide.

Table 4. Targeted/organ-specific agents. Gd-DTPA, gadolinium (III) diethylenetriamine pentaacetate; Mn-DPDP, 
manganese dipyridoxyl diphosphate; SPIO, superparamagnetic iron oxide; USPIO, ultrasmall superparamagnetic 

iron oxide; Gd-EOB-DTPA, gadolinium ethoxybenzyl diethylenetriamine pentaacetate.

Short Name Generic Name Trade Name

Mn-DPDP Mangafodipir trisodium Treslascan

Gd-EOB-DTPA Gadoxetate Primovist

Gd-BOPT Gadobenate dimeglumine -

AMI-25 Ferumoxides (SPIO) Eovist

SH U 555 A Ferucarbotran (SPIO) MultiHance

AMI-227 Ferumoxtran-10 (USPIO) Endorem

Gadofluorine-M - -

Mn-DPDP Mangafodipir trisodium Feridex

Dy-DTPA-BMA Sprodiamide injection Resovist

Gd-DTPA-mesoporphyrin Gadophrin -

Mn-DPDP Mangafodipir trisodium Cliavist

Gd-EOB-DTPA Gadoxetate Sinerem

Gd-BOPT Gadobenate dimeglumine -

AMI-25 Ferumoxides (SPIO) Combidex

SH U 555 A Ferucarbotran (SPIO) -

AMI-227 Ferumoxtran-10 (USPIO) -
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MRI oral contrast agents (OCAs) are basically on the heavy 
metal ions comprising gadolinium, manganese (III), 
manganese (II), copper (II) and iron (III). Air and clay are 
applied for lower T2 signal [63]. The oral use of MRI contrast 
agents including manga¬nese is a noninvasive approach of 

imaging. Conversely, the intravascular route of use of MRI 
contrast agents is more practical and is the more generally 
handled route for MRI scans [64]. A list of OCAS is presented 
in table 6.

Short Name Generic Name Trade Name

Gd-DTPA Gadopentate dimeglumine Magnevist

Gd-DOTA Gadoterate meglumine Dotarem, Artirem

Gd-DTPA-BMA Gadodiamide injection Omniscan

Gd-HP-DO3A Gadoteridol injection ProHance

Gd-DTPA-BMEA Gadoversetamide OptiMARK

Gd-DO3A-butrol Gadobutrol Gadovist

Gd-BOPTA Gadobenate dimeglumine MultiHance

Gd-EOB-DTPA Gadoxetate Primovist, Eovist

MS-325 Gadofosveset AngioMARK, Vasovist, Ablavar

Table 5. Gd chelated agents approved by the United States FDA. ECF, extracellular fluid; Gd-DTPA, gadolinium (III) 
diethylene triamine pentaacetate; Gd-DOTA, gadoterate dotarem; Gd-DTPA-BMA, gadolinium 3-diethylenetriamine 

pentaacetate-bis (methylamide), Gd-EOB-DTPA, gadolinium ethoxybenzyl diethylenetriamine pentaacet.

Table 6. Agents administered orally. MPIO, micron size iron oxide particles.

Short Name Generic Name Trade Name

Gd-DTPA Gadopentate dimeglumine Magnevist Enteral

- Ferric amonium citrate Ferriseltz

- Manganese chloride LumenHance

- Gadolinium-loaded zeolite Gadolite

OMP Ferristene (MPIO) Abdoscan

AMI-121 Ferumoxsil (MPIO) GastroMARK

PFOB Perfluoro-octylbromide Imagent GI

Imaging details of TME in breast cancer through 3 
modalities

Angiogenesis and blood flow

Angiogenesis is regularly observed as a regulating event 
in the multi-step metastatic cascade and might organise a 
rate-limiting step in solid tumor growing. The angiogenic 
response and blood flow remodeling in solid tumors 
might lead clinical indicators and update on response and 
development on treatment [40]. PET using radiolabeled 
water (H215O-PET) is sensitive method that intends to 
noninvasively measurement and measure the physiology 
of tumor microcirculation. PET applies positron-emitting 
tracers, of which H215O can be exploited to study tumor 
blood flow. This method is now being applied in several 
phase I, II, and III clinical trials assessing tumor vascular 
response to antiangiogenic drugs. H215O-PET findings need 

the accessibility of an onsite cyclotron also the predictive 
value of H215O-PET has to be verified in phase III trials with 
predefined cutoff values for response explanation before 
validations on clinical usage can be made [65]. Due to its 
outstanding sensitivity of label detection, optical imaging is 
a compelling approach to assess tissue angiogenesis down 
to the molecular or even genetic level. A wide variability of 
contrast means for key molecules in angiogenesis have been 
explained [66,67]. Nonetheless, clinical translation of OI 
for imaging angiogenesis is incomplete by the moderately 
low tissue penetration of photons, limiting its application 
to primarily superficial structures, and by the incomplete 
accessibility of tracers. More clinical purposes to come 
of contrast-enhanced OI for imaging tissue angiogenesis 
include intraoperative, endoscopic, e.g. cystoscopic [68] or 
laparoscopic techniques [69-71], as well as catheter-based 
instrumentation.
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Lymph nodes

Since the prominence of sentinel lymph nodes (SLNs) in 
tumor staging and patient management, sensitive and 
precise imaging methods of SLNs have been reconnoitered. 
PET possesses advanced sensitivity and temporal 
resolution also PET lymphography has been examined 
with intradermal use of 18F-FDG for joint diagnostic and 
intraoperative visualization of LNs 79. Within 30 min after 
tracer injection, lymphatic vessels and LNs can be genuinely 
published by means of PET in an animal modal. However, the 
clinical application of 18F-FDG PET lymphography might be 
struggled by the fast migration of the small molecules into 
blood flow [72]. 

Mesenchymal Stem Cell

MSCs are fibroblast-like cells with heterogeneous population 
which are observed surrounding blood vessels, comparable 
to pericytes, and are focused in the bone marrow and 
adipose tissue where they are regularly segregated. They can 
likewise be separated from cord blood and placental tissues 
[73-75]. Novel dual-modality (PET/MRI) nanoparticle 
contrast agents are presently being advanced to tag cells 
without transfection reagents; these might show to be 
paramount in animal replicas and in the clinic based on their 
high cell-labeling efficacy and low cytotoxicity [76]. PET 
and PET/CT (computed tomography) scans are commonly 
used clinically to detect human malignancies and have been 
used to detect cytolytic T cells or therapeutic cells. Other 
data, tagged with the HSV1-tk reporter gene or the HSV1-
sr39tk mutant. Reporter gene expression, detected by 
injection of 18F-FHBG, can be used to image cell migration to 
glioblastoma or other tumors [77,78]. The clinical utility of 
PET scans makes them easy to translate into short- or long-
term MSC monitoring applications in patients, depending 
on the contrast reagent used. Studies have shown that with 
MRI [79] and bioluminescence [80] imaging in vivo, we can 
monitor the tumor effects and localization of MSCs, pre-
labeled with an imaging probe and co-injected with tumor 
cells. Accumulation of the MSCs in tumors and developing 
combined treatment/imaging MSC moieties, made them 
as desirable target for [81,82] cell tracking and treatment 
monitoring [83,84].

MMPs

The matrix metalloproteinase family shares specific 
structural and functional components: the pre, pro, and 
catalytic domains required for extracellular secretion, 
enzyme activation, and enzyme activity, respectively [85]. 
MMP family members are further categorized based on 
supplementary protein domains that influence to their 
individual characteristics [86,87]. Recently, several types of 

PET/SPECT tracers have been developed for cancer imaging. 
For example, [18F]-2-deoxy-2-fluoro-D-glucose (FDG) and 
1-[methyl-11C]-methionine are the most commonly and 
successfully used clinical diagnostics of cancer [88]. FDG 
monitors glucose metabolism and is used for cancer staging 
and diagnosis, radiotherapy planning, treatment response 
and prognosis assessment. Methionine measures amino 
acid uptake and helps plan radiation therapy. Tumor uptake 
of both tracers is thought to correlate with tumor growth, a 
key feature of tumor malignancies [88]. For imaging MMPs in 
vivo, several modalities and targeted probes such as MRI have 
been devised [89]. Assessing MMP activity, molecular MRI 
by using protease-modulated contrast agents is emerging 
that is potentially quantitative and it is possible to acquire 
anatomical (morphological) data in the same setting [90].

PH and hypoxia

The pH of TME is typically more acidic than that of normal 
tissues. This is mainly due to the formation of lactate under 
aerobic conditions along with protons from hydrolysis during 
ATP synthesis [91]. The extracellular pH of normal tissues is 
maintained at pH 7.4, whereas the pH of TME ranges from 6.2 
to 6.9 [92]. The Warburg effect seen in cancer cells was readily 
extrapolated to tumor imaging, primarily due to the glucose 
uptake measurements demonstrated using his 18F-FDG-PET. 
18F-FDG PET/CT imaging provides valuable clinical insight 
for cancer staging and recurrence detection [40]. Optical 
imaging has several advantages due to its high sensitivity 
and fast acquisition speed. NIR fluorescence has low 
autofluorescence and absorption of endogenous molecules, 
resulting in increased sensitivity and spatial resolution 
in deep tissue. A recently reported probe, DiIR783-S, is 
activated by hydrazine bond cleavage at low pH, reducing 
self-quenching effects and activating NIR fluorescence 
[66]. Several non-invasive imaging modalities have been 
developed to measure extracellular (PHe) and intracellular 
(PHi) pH in tumors [93,94]. umor pHe and pHi distribution 
can be assessed by 31P MRS/MRSI using pH markers such 
as 3-aminopropylphosphonate [95,96]. However, the lack 
of sensitivity and limited spatial resolution of 31P-MRSI has 
led to the use of 1H-MRSI pHE labeling to further improve 
detection sensitivity [96,97]. Chemical exchange saturation 
transfer (CEST) MRI was developed to detect pH-dependent 
chemical exchange between amide protons and surrounding 
water molecules [97,98]. A dual-tracer MRI-based therapy 
was developed to track drug release from nanocarriers using 
SPION and gadolinium diethylenetriaminepentaacetic acid 
bismethylamide (GdDTPA-BMA) [99]. With GdDTPA-BMA, 
SPIONs lead to a preponderance of negative rather than 
positive reinforcement, resulting in pH-based therapeutic 
probes reaching deep tissue [100]. Oxygen deprivation 
may affect the diagnosis and prognosis of breast tumors. 
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Hypoxia plays an important role in carcinogenesis, causing 
metabolic dysregulation and leading to more aggressive 
tumors indicated by an increased risk of invasion and 
metastasis [101,102]. Noninvasive approaches to detect and 
monitor changes in blood oxygen levels, such as magnetic 
resonance imaging, have been proposed to visualize tissue 
hypoxia in human tumors. Dynamic contrast-enhanced 
(DCE) MRI has been proposed as a suitable technique to 
assess tumor hypoxia [103,104]. Tumor hypoxia is directly 
and noninvasively imaged and visualized by hypoxic 
markers that accumulate in hypoxic cells using electron 
paramagnetic resonance (EPR) or 19F-MRS (magnetic 
resonance spectroscopy) [105-108]. Magnetic resonance 
spectroscopy (MRS) was developed with a probe that utilizes 
the relaxation of hexamethyldisoroxane (HMDSO(1H MRS)) 
[109]. To measure the extent of deoxygenation. Aggressive 
contrast enhancement is achieved using gadolinium-
tetraazacyclododecane-tetraacetic acid to improve the 
imaging modality. 2-Nitro-imidazole monoacid conjugate 
(GdDO3NI) [110]. Due to the relationship between hypoxia 
and vascular tissue oxygenation, a number of MRI modalities 
based on vascular features associated with tumor hypoxia, 
such as BOLD, TOLD, and DCE-MRI, are capable of detecting 
changes in tumor hypoxia. Known [111-113]. Tissue oxygen 
tension has also been demonstrated by 19F MRI oximetry 
using perfluorocarbons [113].

Proteoglycan (Hyaluronan) Imaging 

Proteoglycan hyaluronan (hyaluronic acid) is a nonsulfated 
glycosaminoglycan in ECM that often used as a tumor 
marker for breast and prostate cancer, monitoring the 
progression of the disease [114-116]. Of note that, depends 
on its molecular weight may be as a tumor suppressor or 
developer. Hyaluroni-dase-1, 2 (Hyal1, Hyal2) that have 
studied mainly in cancer, result in degradation of hyaluronan 
[116]. It is reported that Hyal1 over-expression has been 
related with more aggressive tumors in an enormous kinds 
of epithelial cancers such as breast, bladder, colorectal and 
ovary [116]. In recent years, the advancement of various HA 
probes to image HA turnover and clearance [117,118] has 
expanded extremely. HA probes often use the high specificity 
of HA for the CD44, are a receptor for hyaluronic acid and 
overexpressed in different type of tumor cells [119]. Single 
moiety, HA-based CAs have been applied to image Hyals 
activity by MRI [120]. In order to assess the Hyal activity, HA 
probes often consist of more than one CA moiety to control 
the strength of multimodal imaging such as MRI/optical 
imaging [121,122], MRI/computer tomography (CT) [123], 
resulting in much better diagnostic capability and improve 
therapy efficiency [124].

Cancer-associated fibroblasts (CAFs) and imaging 

Cancer-related fibroblasts are rich cell types in a tumor 
stroma that show a strategic function in advancing cancer, 
progression and metastasis [125]. CAFs are determined 
by numerous markers including α-smooth muscle actin 
(α-SMA), vimentin and fibroblast-activation protein α (FAP) 
[126]. FAP expresses in tumor cells and also increasingly 
elevates in CAFs that makes it as an ideal target for diagnostic 
and therapeutic imaging [127-129]. Due to peptide 
substrates share with other postprolyl peptidases by FAP in 
FAP-targeted in vivo imaging probes, resulting non-specific 
binding in vivo [128], To do so, Granot et al. CAF was used in 
vitro with the contrast agents biotin-bovine serum albumin-
gadolinium diethylenetriaminepentaacetic acid, Feridex, 
or 1,10-dioctadecyl-3,3,3-tetramethylindotricarbocyanine 
iodine [128,130]. Many investigations revealed that on 
the basis of depletion of FAP-expressing stromal cells with 
multimodal imaging probes can seriously improve treatment 
responses in cancer [131].

Tumor vasculature and Lymphatics-endothelial Cells 

Endothelial cells (ECs) constitute the foremost available 
elements of blood vessels and are responsible for tumor 
enhanced angiogenic potential, which prominently affect 
tumor progression [132,133]. Recent attention has 
focused on the importance of vascular endothelial cells, 
as endothelial cell dysfunction contributes to tumor cell 
adhesion, migration and metastasis through reduced 
synthesis of vasoprotective mediators. Suppression of breast 
cancer metastasis [134,135]. Therefore, tumor vascularity 
has been assessed in vivo noninvasively by MRI imaging 
[17]. Lymphatic endothelial cells express specific antigens 
such as podoplanin to promote their migration, adhesion 
and lymphogenesis. Podoplanin is the most commonly used 
marker for lymphatic endothelial cells, and a probe targeting 
lymphoid cells has been developed for his MRI imaging [95]. 
Yang et al. developed polyethylene glycol (PEG)-GoldMag 
NPs which were conjugated with anti-podoplanin antibody 
(PodAb), resulting in assessment of the tumor lymph 
angiogenesis in vivo using MRI in breast cancer [136].

Interstitial Fluid Pressure (IFP)

An imbalance in angiogenic factors such as vascular 
endothelial growth factor (VEGF), matrix metalloproteinases 
(MMPs) and angiopoietins leads to abnormal blood vessel 
formation. In some cases, high permeability allows the 
exchange of molecules within the tumor vasculature without 
maintaining gradients. This leads to abnormalities in his IFP 
[137,138].

CONCLUSION

Breast cancer (BC) is the most common malignant tumor and 
the second cause of death, after heart diseases, among women 
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worldwide. External factors in mutual cooperation with 
internal factors initiates and progresses breast malignancies 
which one of them is TME. There are 3 indispensable 
methods which have important role in detecting role of TME 
in progression of breast cancer. PET, MRI and Optical Imaging 
methods have been discussed through diverse detection of 
TME components using their numerous capabilities.
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