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ABSTRACT
Osteoclasts resorb the bone matrix and maintain bone and calcium homeostasis. During bone resorption, osteoclasts form 
an actin ring and seal the bone matrix for bone resorption. The tyrosine kinase Src is essential for actin ring formation and 
bone resorption. However, the molecular mechanisms underlying the regulation of actin ring formation by Src is still unclear. 
A cytolinker protein, plectin, was identified as one of the proteins downstream of Src. Plectin is localized, along with Src, 
around the actin ring of osteoclasts. Plectin binds to and is phosphorylated by Src. Differentiation and actin ring formation 
were inhibited by plectin downregulation. These results suggest an important role for plectin in osteoclast differentiation 
and actin ring formation via phosphorylation by Src.
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ABBREVIATIONS
Src: Rous sarcoma oncogene; M-CSF: Macrophage colony stimulating factor; RANKL: Receptor activator NF-κB ligand; RANK: 
Receptor activator NF-κB; MAPK: Mitogen-activated protein kinase; NFATc1: Nuclear factor of activated T cells, cytoplasmic, 
calcineur in dependent 1; Pyk2: Proline-rich tyrosine kinase 2; p130Cas: Crk-associated substrate; qPCR: Quantitative poly-
merase chain reaction; PKC: Protein kinase C; JNK: c-Jun N-terminal kinase; Erk: Extracellular regulated MAP kinase.

INTRODUCTION
Osteoclasts are multinuclear cells differentiated from hema-
topoietic cells. Hematopoietic stem cells are differentiated 
into monocytes by the macrophage colony stimulating fac-
tor (M-CSF), which is secreted by osteoblasts or osteocytes. 
Subsequently, the monocytes fuse to each other and acquire 
osteoclast phenotypes, due to receptor activator NF-κB ligand 
(RANKL) and receptor activator NF-κB (RANK) signaling in the 
presence of M-CSF [1,2]. RANK-RANKL signaling activates NF-
κB and mitogen-activated protein kinase (MAPK) signaling, 
such as c-Jun and c-fos, and then, promotes expression and 
activation of the nuclear factor of activated T cells, 

cytoplasmic, calcineur in-dependent 1 (NFATc1), a master reg-
ulator of osteoclast differentiation [1-3]. After differentiation, 
osteoclasts attach to the bone matrix through αvβ3 integrins 
and organize the actin cytoskeleton [4, 5]. To cover and seal 
the bone matrix, osteoclasts form a unique actin structure 
called a podosome [4, 5]. The podosome is a dot-like struc-
ture, consisting of accumulated actin, integrins, and some 
other actin-binding and -regulatory proteins [4]. Podosomes 
are arranged at the cell periphery and form a ring-like struc-
ture called the actin ring [5]. Formation of the actin ring is es-
sential for the formation of the sealing zone and bone resorp-
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tion by osteoclasts [4, 6, 7].

As tyrosine kinase-deficient osteoclasts cannot form an actin 
ring and sealing zone, severe osteopetrosis is observed in Src-
deficient mice [6-8]. This suggests that Src regulates actin ring 
formation, and subsequently, bone resorption. Although Src 
does not contain an actin-binding domain, it regulates actin 
organization by binding and phosphorylating actin regulatory 
proteins, such as the proline-rich tyrosine kinase 2 (Pyk2) and 
Crk-associated substrate (p130Cas) [9-14]. The phenotypic 
characteristics of Pyk2-deficient mice and osteoclast-specific 
p130Cas-deficient mice include mild osteopetrosis [10, 14]. 
Additionally, cortactin-deficient mice do not have an osteo-
clast phenotype. These results suggest that unknown proteins 
are involved in actin ring formation by Src.

 The cytolinker protein, plectin, was identified as a Src-bind-
ing protein. Plectin is a large protein (> 500 kDa) that binds 
to multiple proteins, including actin and tubulin, and func-
tions as a scaffold for protein-protein interactions [15, 16]. 
We, first, examined plectin expression by western blotting 
and found that plectin expression was higher in osteoclasts 
than in macrophages, that are osteoclast precursor cells [17]. 
Plectin, along with Src, was localized around the actin ring of 
osteoclasts [17]. These results suggest that plectin is involved 
in the organization of the actin ring by Src. Plectin has at least 
12 transcriptional variants that differ from each other in exon 
1 [16, 18]. The different N-terminal regions of plectin regu-
late localization in the cytoskeleton [16]. The antibody against 
plectin that was used in the western blotting and immuno-
fluorescence analyses recognizes pan-plectin and cannot dis-
tinguish between the variants [17]. However, qPCR analysis 
suggested that plectin 1d is higher expressed in osteoclasts 
than in the skeletal muscle (Figure 1).

Figure1: Plectin isoform d was highly expressed in osteoclasts. 

mRNAs were isolated from the quadricep muscle (indicated as muscle) 
and osteoclasts were differentiated from bone marrow cells with M-CSF 
(20 ng/ml) and RANKL (100 ng/ml) (indicated as OCL). cDNA was syn-
thesized from 1 μg of total RNA by using SuperScript II transcriptase and 
random primers. Real-time quantitative PCR was performed using cDNA. 
The data was normalized by actin. * denotes P < 0.01. Representative 
data from at least two mice are shown for the experiment.

Plectin 1d is localized to podosomes and regulates podo-
some formation [18]. These results suggest that plectin 1d is 
involved in the actin ring formation of osteoclasts. We, next, 
examined the interaction between Src and plectin using Halo-
tagged plectin. Plectin bound to Src and was phosphorylated 
by constitutively activated Src [17]. These results suggest that 
plectin is one of the proteins downstream of Src in actin ring 
regulation.

The role of plectin was examined by introduction of plectin 
shRNA in an osteoclast precursor cell line, RAW 264.7. Sur-
prisingly, downregulation of plectin suppressed the differen-
tiation of osteoclasts [17]. During differentiation, osteoclast 
precursor cells migrate, change shapes (form protrusions), 
and then attach to each other [5, 19]. Plectin binds to integ-
rins, actin, tubulin, and intermediate filaments, and regulates 
cell shape and migration [15]. Moreover, plectin functions as 
a scaffolding platform in various signaling pathways, such as 
in the MAPK and PKC signaling pathways [15]. RANK-RANKL 
signaling promotes osteoclastogenesis by activating MAPK 
signaling and activation of c-fos, p38, and c-Jun/JNK is essen-
tial for osteoclastogenesis and for expression and activation 
of NFATc1 [1, 3, 20]. PKC also plays an important role in osteo-
clastogenesis through Erk signaling [21]. These results suggest 
a hypothesis in which plectin functions as a scaffold for MAPK 
and PKC signaling during osteoclast differentiation.

Downregulation of plectin also disturbed actin ring formation 
in osteoclasts [17]. Src and downstream proteins were acti-
vated by integrin signaling, when osteoclasts attached to the 
bone matrix and organized the actin ring [5]. Plectin has both 
actin- and integrin-binding domains [16]. These results sug-
gest that plectin plays an important role in actin ring organiza-
tion through integrin and Src signaling.

Taken together, plectin plays an important role in osteoclast 
differentiation and actin ring formation through Src binding 
and phosphorylation (Figure 2). 

Figure2: Scheme for the role of plectin in osteoclasts.

Osteoclast precursors are differentiated to osteoclasts by RANKL signal-
ing. Plectin may act as a scaffold for MAPK and PKC signaling and may 
activate NFATc1, a master regulator of osteoclast differentiation. Plectin 
also plays an important role after the differentiation of osteoclasts. Plec-
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tin links integrin and Src signaling to the organization of the actin ring as 
an actin binding protein.
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