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ABSTRACT
Hearing loss is the most common form of sensory impairment in humans, affecting 5.3% worldwide population. Hearing is 
critical to the performance of military personnel and is integral to the rapid and accurate processing of speech information. 
Noise-induced hearing loss represents a severe impairment that reduces military effectiveness, safety, and quality of life. 
Military personnel work in high-noise environments, yet the Department of Defense cannot predict who is susceptible to 
noise-induced hearing loss and tinnitus. Of those exposed to noise, 80% may also suffer from chronic tinnitus. Despite its 
prevalence, there are no means to objectively measure the severity of tinnitus in those individuals. A fundamental under-
standing of the underlying mechanisms of tinnitus and its relation to noise-induced hearing loss is critical. Such an under-
standing may provide insight to who is at risk for each condition, allow aggressive hearing protection measures in those 
individuals most at risk, and create areas for treatment for those already suffering from the conditions. The current review 
addresses the scope of the problems of noise-induced hearing loss and tinnitus for the military, discuss the noise environ-
ments in which military personnel operate, and describe recent pharmacotherapy trials. Some recent breakthroughs in 
noise-induced hearing loss research are discussed along with some challenges and directions for future research on hearing 
loss and tinnitus.
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COCHLEA AND HAIR CELLS 
The mammalian cochlea is the sensory organ capable of per-
ceiving sound over a range of pressure, and discriminating 
both infrasonic and ultrasonic frequencies in different spe-
cies. The organ of Corti is located in the cochlea of the inner 
ear and is responsible for the detection of sound. This organ 
harbours the auditory sensory epithelium, which, in humans, 
contains approximately 16,000 hair cells that are patterned 
into three rows of outer hair cells (OHCs) and one row of inner 
hair cells (IHCs)[1, 2]. The cell bodies of hair cells form spe-
cialized adhesive contacts with supporting cells that adhere at 
their basolateral surfaces to the basilar membrane, an extra-
cellular matrix assembly with a different molecular composi-
tion from the tectorial membrane [3, 4]. 

Hearing is initiated when sound waves that reach the outer 

ear travel through the ear canal to the tympanic membrane. 
Then, the sound energy is transferred, via the bony ossicles 
of the middle ear, to the oval window at the base of the fluid-
filled cochlea. The motions of the oval window are converted 
into fluid pressure waves that induce vibrations in the basi-
lar membrane. Then, the vibrations are transferred onto the 
hair cells, leading to the deflection of the hair cell stereocilia 
[5]. This deflection causes the opening of transduction chan-
nels leading to hair cell depolarization and to the release of 
neurotransmitters onto neurons, which form synapses with 
hair cells. The electrical signals are propagated through the 
nervous system and processed in the brainstem and auditory 
cortex [6, 7]. 
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HEARING LOSS 

Hearing loss is the most common form of sensory impairment 
in humans, affecting 360 million persons worldwide, with a 
prevalence of 183 million adult males and 145 million adult 
females. In nonsyndromic deafness, only hearing function is 
noticeably altered, whereas syndromic deafness is accompa-
nied by other physiological defects. 

Hearing loss can be caused by environmental factors, such as 
exposure to noise or ototoxic chemicals, or by aged related se-
nescence. Traumatic injury, such as injury caused by exposure 
to an explosion or to the firing of a gun, can lead to sudden 
hearing loss. Sometimes this hearing loss is accompanied by 
the perception of a constant ringing noise called tinnitus [8]. 
Moreover, genetic factors as mutations in MT-TS1, MYO7A or 
ACTG1 genes [9-11], between many others, have already been 
linked to nonsyndromic hearing loss. 

Noise exposure is responsible for approximately 10% of hear-
ing loss in adults, in particular military veterans [12]. Short im-
pulses of high intensity noise such as a gunshot or explosion 
can trigger sudden hearing loss, which is generally irreversible 
and associated with structural damage to the auditory system. 
Susceptibility to damaging effects of noise differs remarkably 
among individuals, which indicates that genetic factors might 
be important in disease development. Gene association stud-
ies using candidate-gene approaches have focused mostly on 
genes that are linked to oxidative stress, potassium recycling 
and the heat shock response [13]. 

On the other hand, various chemical agents as aminoglycoside 
antibiotics, platinum-containing chemotherapy agents and 
nonsteroidal anti-inflammatory drugs are ototoxic [14, 15]. 
For example, aminoglycosides, antibiotic with broad spectrum 
activity, cause significant hearing loss, with estimates of a 20–
50% chance of incidence when treating acute infections [16, 
17]. Hair cells are readily damaged by this compound probably 
due the similarity of hair cell mitochondrial ribosomes to their 
bacterial counterparts [18]. 

Finally, the most common form of sensory impairment in old-
er people is the age-related hearing loss [19]. This disorder 
is characterized by symmetric sensorineural hearing loss that 
starts at high frequencies with a prevalence of 35% of indi-
viduals over 65 years of age [20]. Although hearing loss has 
been considered to be part of a natural ageing process, not all 
humans suffer from age-related hearing loss [21]. 

Noise-induced hearing loss in military
People serving in the military, especially those in areas of 
combat, are at some point exposed to high-intensity noise of 
various types. Two possible consequences of such exposures 
are the development of a hearing loss, most prominent for 

high-frequency sounds, and tinnitus [22, 23]. Depending on 
a variety of factors, these effects may be either temporary or 
permanent consequences of such an exposure. 

If documentation of the existence of hearing loss or tinnitus 
at discharge from the military is missing, it is nearly impos-
sible to determine whether hearing loss or tinnitus detected 
by audiometric testing later in life is the result of noise ex-
posure during prior military service. However, several studies 
demonstrated that the two most prevalent service connected 
disabilities for veterans in the United States at the end of fis-
cal year 2012 remain tinnitus and hearing loss, with tinnitus 
affecting 115,638 veterans (9.7%) and hearing loss affecting 
69,326 veterans (5.8%) [24]. Both noise and aging, for exam-
ple, result in similar high-frequency hearing loss, although the 
specific patterns of hearing loss resulting from each are gener-
ally distinguishable until 60–70 years of age. This adds to the 
challenge of determining the cause of the hearing loss when 
the only existing documentation consists of hearing thresh-
olds measured late in life and many years after military ser-
vice. In addition, it is quite likely that an individual might have 
experienced other hazardous noise exposures subsequent to 
discharge from military service that could result in significant 
noise-induced hearing loss or tinnitus. After the fact, for ex-
ample, there are no current available means to distinguish the 
hearing loss resulting from several years of military service 
from the noise-induced hearing loss resulting from subse-
quent work in a noisy industry or from participation in a wide 
variety of recreational activities. This serves to underscore the 
importance of measuring hearing thresholds at enlistment 
and at discharge, with annual measurements in between for 
those most at risk for noise-induced hearing loss and tinnitus.

These uncertainties regarding noise-induced hearing loss and 
tinnitus have placed the Department of Veterans Affairs (VA) 
in a quandary. Frequently, VA personnel are called on to deter-
mine whether the hearing loss measured in a 70- or 80-year-
old veteran is due to this individual’s prior military service. 
Furthermore, this assessment frequently must be done in the 
absence of documentation of the measurement of hearing 
thresholds at or around the time of military service as men-
tioned before.

Moreover, information on noise sources and levels in the mili-
tary environment is not easily summarized. Sound levels vary 
depending on the distance from the sound source and the 
conditions under which the sound is being generated. Impor-
tant characteristics of impulse noise include not only the peak 
sound pressure level, but the time pattern of the impulses and 
the frequency spectrum [25-28]. The Table 1 provides exam-
ples of some of the measurements made since the 1950s of 
average sound levels found in ground vehicles and aircraft and 
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peak sound pressure levels generated by certain weapons. On 
aircraft carriers, flight operations create an environment with 
combinations of aircraft noise, mechanical noise, and impact 
noise [29]. Below the flight deck, sound levels have been mea-
sured at 106 dBA during aircraft launches. Exposure to high 
sound levels has also been reported for military personnel in 
positions such as radio operators [30] in the Navy and crypto-
linguists in the Air Force [31]. In addition, military personnel 
may encounter potentially damaging noise from equipment 
and activities comparable to those found in industrial settings, 
such as the operation of heavy equipment. The examples of 
noise levels associated with equipment and weaponry in the 
military included in Table 1 clearly demonstrate that there 
are many sources of high sound pressure levels in the military 
environment that exceed criteria for safe exposure. Data on 
sound pressure levels, however, are not sufficient by them-
selves to determine the noise dose received by an individual. 

Table 1: Examples of sound levels associated with military equipment.

Aircraf in use in 1950s

Name Model Location Sound Level (dB)

Douglas Skyraider A-1J (AD-7) Cockpit 118-132

Douglas Skyraider A-1J (AD-7) Passenger 
area

106-111

Military Equipment in use in 1960s

Name Model Location Sound Level (dB)

NATO rifle M-14 Operator 159

Helicopter (Shawree) H-21C Crew chief 110

Military equipment in use in 2005

Army vehicles Model Location Sound Level 
(dB)

High-mobility 
multipurpose 
wheeled vehi-
cle (HMMWV), 
non-heavy 
variants

M996, M997, 
M998, etc

Crew positions 78 - 94

HMMWV 
heavy variant

M1097 Crew positions 85-100

Abrams tank M1A2 In vehicle 93-117

Army Helicop-
ters

Model Location Sound Level 
(dB)

Blackhawk UH-60A Pilot 106

Apache YAH-64 Pilot 104

Weapons Model Location Sound Level 
(dB)

9mm pistol M9 Shooter 157

Grenade M26 At 50 ft 164

MAAWS re-
coilles rifle

M3 Gunner 190

155 mm 
towed how-
itzer

M198 Gunner 178

NOTES: In flight, helicopter crews wear helmets with integral hearing 
protectors. 

HMMWV, high-mobility multipurpose wheeled vehicle; MAAWS, multi-
role anti-armor anti-personnel weapon system.  

Source : Noise and military service. The national academies press. Wash-
ington

We can conclude that hazardous noise levels have been and 
are present in many military settings and that certain military 
personnel from World War II to the present have exhibited 
hearing thresholds while in the military that are typical of 
noise-induced hearing loss. Extensive collections of data on 
sound pressure levels produced by equipment and activities 
in military settings are available from World War II to the pres-
ent. However, because of the changing nature of assignments 
in the military, the unpredictable aspects of military training 
and combat, the intermittent nature of many military noise 
exposures, and the sporadic use of hearing protection while 
in the military, these data do not provide a sufficient basis 
to estimate cumulative noise exposures over the course of 
military service. Nowadays, we are not able to determine the 
probability of acquiring noise-induced hearing loss associated 
with service in the military, or in specific branches of the mili-
tary, for a given individual. The probability of acquiring noise-
induced hearing loss can only be determined precisely with 
well-controlled, longitudinal epidemiological studies.

TINNITUS IN MILITARY

Tinnitus is the hearing of sound when no external sound is pres-
ent. While often described as a ringing, it may also sound like a 
clicking, hiss or roaring. Tinnitus may mainly occur following a 
single exposure to high-intensity impulse noise, long-term expo-
sure to repetitive impulses, long-term exposure to continuous 
noise, or exposure to a combination of impulses and continuous 
noise [32]. Other reasons such as ototoxic compounds adminis-
tration, diseases or external traumatic factors could also lead to 
tinnitus disorder. Persistent tinnitus causes anxiety and depres-
sion. Moreover, psychological problems such as depression, anxi-
ety, sleep disturbances and concentration difficulties are directly 
linked to tinnitus disorder [33].

Only a few studies reported on the prevalence of tinnitus in 
samples of military populations that might be considered rep-
resentative, and information on noise exposures is limited. 
One of it presented a random sample of 2,200 Israeli soldiers, 
a 14 percent reported having tinnitus [34], but no information 
was available on individuals’ levels of noise exposure. Among 
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the 204 officers in a Swedish infantry regiment, a 17 percent 
reported experiencing tinnitus [35]. The rate ranged from a 
11 percent among the officers 30 years of age and younger 
to a 24 percent among those over age 50. The prevalence of 
tinnitus was 26 percent among those who had been exposed 
to heavy-weapons fire and significantly higher than the rate of 
5 percent among those exposed to gunfire from only smaller 
arms [35].

In an age-stratified random sample of 699 Finnish Army of-
ficers, a 34 percent reported experiencing “occasional” tin-
nitus and a 9 percent continuous tinnitus [36]. Tinnitus was 
significantly correlated with exposure to a greater number of 
weapons impulses and, in contrast to the Swedish study, more 
strongly correlated with exposure to impulses from small cali-
ber than large-caliber weapons [36]. The scale of the exposure 
was not directly specified, but it was estimated to be more 
than 200,000 impulses for at least some officers.

Taken together, these data suggest that hearing loss is associ-
ated with a higher prevalence of tinnitus depending on noise 
doses. However, present data do not allow to reach conclu-
sions regarding the specific number or proportion of service 
members, overall or in specific branches or occupational 
groups, who report that tinnitus began or was exacerbated by 
noise exposure during military service.

Pharmacotherapy for Noise-induced hearing loss

Currently there is no established treatment for patients and it 
is limited to prevention and follow-up. However, some clinical 
and military trials have been carried out for temporary thresh-
old shift, in which administration of antioxidant nutritional 
supplements, such as magnesium, N-acetyl-cysteine (NAC) or 
vitamins, before moderate noise exposure showed some ben-
eficial effects [37, 38]. 

Magnesium efficacy was tested in a double-blind study. Test 
subjects were given either 122 mg of magnesium or a placebo 
for 10 days and thereafter subjected monoaurally to 90 dB 
SPL of white noise for 10 minutes. Increase of 20 dB thresh-
old shifts was found in 28% of the placebo group compared 
to 12% in the magnesium supplemented group [39]. More-
over, Attias et al. conducted a double-blind placebo controlled 
study on army recruits and concluded that recruits who had 
magnesium supplementation had less frequent noise-induced 
hearing loss compared to the placebo group [40]. These 300 
army recruits underwent basic military training where they 
were subjected to shooting range noises of an average peak 
level of 164 dB and <1 ms duration with the use of ear plugs 
which reduced noise level by about 25 dB. The hearing loss 
was defined as a threshold >25 dB hearing loss in at least 1 
frequency and it was found that threshold shift was higher in 

placebo group (11.5%) as opposed to the participants in the 
magnesium group (1.2%).

NAC acts as a reactive oxygen species scavenger and is postu-
lated to reduce noise-induced hearing loss by reducing the ex-
posure of the cochlea to reactive oxygen species, as observed 
in some laboratory studies [41]. Clinical trials using NAC re-
main presently controversial and inconclusive. Whereas 
Kramer and collaborators published that NAC treatment didn’t 
protect temporary thresholds shifts after noise exposure [42], 
Kopke and collaborators demonstrated that NAC significantly 
reduced auditory threshold shifts and DPOAE changes in mili-
tary subjects undergoing routine weapons training [43].  

Finally, Ebselen is a potent glutathione peroxidase mimic and 
neuroprotectant. It also has strong activity against peroxyni-
trite, a super reactive oxygen species. It reduces cytochrome 
c release from mitochondria and nuclear damage during lipid 
peroxidation [44]. Since it acts as a catalyst, low does maybe 
sufficient to prevent or treat noise induced hearing loss [45]. 
Phase II trials are currently in progress to determine the ef-
ficacy of oral ebselen

In conclusion, accumulating evidence demonstrated that an-
tioxidants and free radical scavengers may serve as effective 
therapeutic agents to block the activation of death mecha-
nisms induced by noise exposure. 
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