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INTRODUCTION

Myoblasts was first isolated from rat skeletal muscle tissues 
by David Yaffe using preplate techniques and could be main-
tained in vitro for many months in a state of continuous mul-
tiplication and retain the capacity to fuse and differentiate 
into postnatal multinuecleated myofibers. He found virtually 
all the cells in this cell line have potential to differentiate into 
myofibers[1]. Later, Dr. Yaffe established a C2 myoblast cells 
line from injured thigh muscle of two month old C3H mice [2]. 
Blau et al recloned C2 cells and expanded the cells to C2C12 
myoblast cell line[3].  Furthermore, Blau’s group  isolated pri-
mary myoblasts use the preplating method and found that  
these cells are primarily myogenic, both in vitro and in vivo 
[4]. Subsequently,  Huard group isolated a subpopulation of 
muscle stem cells  termed muscle-derived stem cells (MD-
SCs, preplate 6), using the modified preplate technique which 
were found to be multipotent in vitro and in vivo [5-8].  Based 
on these pioneer researches, much more progress had been 
made in using MDSCs for various tissue engineering. The pur-
pose of this review is to highlight recent advances in the use 
of MDSCs for bone and cartilage repair. 

MUSCLE-DERIVED STEM CELLS FOR BONE REPAIR

Murine MDSCs for bone repair

Our team demonstrated that after transduction with BMP2 
using an adenoviral vector, murine MDSCs could efficiently 
regenerate new bone within a critical size defect created in 
the calvaria of mice [6].  In addition, we also demonstrated 
that in vivo transplantation of allogenic BMP4-transduced 
murine MDSCs formed new bone both intramuscularly and 
within critical size calvarial bone defects in normal mice [9]. 
We proposed at this time that angiogenesis played an impor-
tant role in MDSC mediated bone regeneration and validated 
this hypothesis by performing angiogenesis gain and loss of 
function experiments. We showed that the co-transplantation 
of VEGF (a strong inducer of angiogenesis) transduced MDSCs 
with BMP transduced MDSCs enhanced the formation of new 
bone; whereas, the co-delivery of sFlt-1(a VEGF antagonist) 
transduced MDSCs  with BMP transduced MDSCs decreased 
bone formation [10, 11].  

Though BMP transduced MDSCs can efficiently form new 
bone, bony overgrowth often occurs during the regenera-
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tion process; hence preventing this overgrowth is also impor-
tant. During the natural process of bone healing, there exist 
a number of positive and negative environmental cues that 
fine-tune and regulate bone formation. We predicted that the 
co-delivery of noggin, a BMP antagonist, could improve the 
quality of the new bone.  Indeed, our team demonstrated that 
the co-transplantation of BMP-transduced MDSCs and nog-
gin-transduced MDSCs into a critical size calvarial defect could 
prevent excessive new bone formation, which resulted in 
well integrated bone formation in the defect area [12]. More-
over, we recently found that, in addition to the direct differ-
entiation of BMP4 transduced MDSCs toward an osteogenic 
lineage(osteoblasts and osteocytes), they also participate in 
paracrine signaling via the secretion of MCP1, VEGFα, FGF2, 
IGF2, PDGF, and TGFβ1 into the microenvironment which fa-
vorably interact with the host cells such as inflammatory cells, 
endothelial cells.  [13]. The quality of the bone formed is also 
dependent on the scaffold used to deliver the cells. We have 
shown that fibrin sealant (an absorbable scaffold) promotes 
the integration of the new bone with the existing host bone 
[14].

The capacity of MDSCs to promote new bone formation is 
also affected by the sex of the donor and recipient. Corsi et al. 
demonstrated murine male MDSCs were more efficient than 
female MDSCs at promoting osteogenic differentiation in vitro 
and new bone formation in vivo. Male MDSCs were found to 
contain more osteogenic progenitor cells than female MDSCs. 
Furthermore,  male recipients produced more ectopic bone 
than female recipients, regardless of the sex of the donor cells 
which further indicated that the sex of the host animal also 
played a role in MDSCs-mediated bone regeneration [15]. 
However, this difference in bone formation between male 
and female recipients does not appear to be related to their 
differing concentrations of circulating hormonal factors [16]. 
However, there are still more mechanisms regarding the sex 
difference of MDSCs mediate bone regeneration to explore. 

Human MDSCs for bone repair 

To facilitate the application of MDSCs in clinical practice, re-
searchers have isolated human muscle-derived cells using 
different techniques. Earlier times, researchers in Dr. Huard’s 
group have isolated human muscle-derived cells that con-
tained myogenic cells and fibroblast  and found  they were 
capable of enhancing the healing of critical size calvarial de-
fects in immunodeficient mice (i.e., SCID mice) when they 
were transduced to express BMP2 using adeno and retro vi-
ral vectors. The cells mainly served as gene delivery vehicle 
in this case [17].  Another group from Italy, isolated human 
muscle-derived cells using a similar technique used to isolate 

BMMSCs. The cells that were allowed to adhere to the plates 
for 72 were found to be similar to bone marrow stromal cells 
[18]. They found that the human muscle-derived cells  were 
multipotent in vitro and were capable of producing new bone 
in vivo after subcutaneous implantation [18]. More recently, 
we have successfully isolated MDSCs from human skeletal 
muscle tissues using the modified preplate technique [19]  
and termed these cells human muscle-derived stem cells 
(hMDSCs). Further characterization of hMDSCs indicated that 
more than 95% of these cells expressed CD73, CD90, CD105, 
CD44, CD56, and CD146, but were negative for UEA and CD45. 
These cells were found to be capable of undergoing adipogen-
esis, chondrogenesis, osteogenesis, and myogenesis in vitro, 
thus confirming their multipotency. These cells were found to 
be very similar to BMMSCs in terms of their multipotent dif-
ferentiation capacities and marker profiles. In vivo, hMDSCs 
could efficiently regenerate bone in a critical size cavarial bone 
defect created in mice when transduced with lenti-BMP2 [20].  
Moreover, we also found that hMDSCs were as efficient as hu-
man BMMSCs in term of their ability to promote bone defect 
healing when transduced with lenti-BMP2. Both hMDSCs and 
human BMMSCs require BMP2 to regenerate bone [21]. Inter-
estingly, hMDSCs do not have the disadvantage of bony over 
growth seen in murine MDSCs mediated bone regeneration.   

Using the prospective isolation method designed by Zheng 
et al [22], we were able to identify a population of myogenic 
endothelial cells (CD56+CD34+CD144+CD45) capable of pro-
moting new bone formation when retro virally transduced to 
express BMP4 [22, 23]. An independent study by Jackson et al. 
demonstrated the isolation of mesenchymal stem cells from 
traumatically injured human skeletal muscle which also exhib-
ited multipotent characteristics in vitro [24].  These aforemen-
tioned studies showed that stem cells isolated from human 
skeletal muscle are a very promising stem cell resource for 
bone tissue repair and engineering. 

MUSCLE DERIVED STEM CELLS FOR CARTILAGE RE-
PAIR

Although, it has been well-documented that both murine MD-
SCs and human MDSCs can significantly enhance new bone 
formation, only murine MDSCs have been studied with respect 
for cartilage regeneration. Our group has shown that murine 
MDSCs genetically transduced with retro-BMP4 can differenti-
ate into chondrocytes in pellet culture and promote healing 
of focal cartilage defects in the femoral condyles of rats. The 
repair process is mediated by direct differentiation of murine 
MDSCs into chondrocytes and hypertrophic chondrocytes. 
Similar to its importance in bone healing, BMP4 transduction 
is also crucial for murine MDSC-mediated cartilage repair [25]. 



www.mathewsopenaccess.com

3Citation: Huard J and Gao X. (2018). Muscle-Derived Stem Cells for Bone and Cartilage Repair. M J Orth. 3(1): 023.

In contrast to the beneficial effects that angiogenesis has on 
murine MDSC mediated bone formation, it has been demon-
strated that angiogenesis is actually detrimental to MDSC-me-
diated cartilage regeneration. In one study, it was demonstrat-
ed that BMP4-transduced murine MDSCs promoted cartilage 
regeneration much more efficiently when co-transplanted 
with sFlt-1 transduced murine MDSCs, which is a potent in-
hibitor of angiogenesis [26]. This concept was supported in 
a subsequent study which demonstrated that monoiodoac-
etate damaged cartilage (a model for osteoarthritis), regener-
ated much more effectively when BMP4 transduced murine 
MDSCs were co-transplanted with sFlt-1 expressing murine 
MDSCs [27].   

Similar to the findings of MDSC-mediated bone formation, the 
capacity of murine MDSCs to regenerate cartilage is also in-
fluenced by the sex of the cells. More specifically, male BMP4 
expressing MDSCs formed larger chondrogenic pellets with 
a richer cartilage extracellular matrix compared to female 
BMP4 expressing murine MDSCs in vitro. Moreover, male mu-
rine MDSCs repaired articular cartilage more efficiently than 
female BMP4 transduced MDSCs [28]. As a potential method 
to improve cartilage regeneration in clinical practice, we are 
currently exploring the use of ex vivo genetically modified 
hMDSCs for cartilage repair. We are also investigating the use 
of injectable biomaterials to deliver BMP2 and sFlt1 into the 
micro-milieu of the joint to repair damaged cartilage.

CONCLUSION

In summary, MDSCs represent an abundant source of stem 
cells that have great potential for bone and cartilage repair. 
Human MDSCs are equal to human BMMSCs in their efficacy 
for regenerating new bone after being transduced with BMP2 
[21]. Human MDSCs can also be expanded in vivo for up to 
20 passages without affecting their cellular function; on the 
other hand, human BMMSCs can only be expanded for ap-
proximately 10 passages before the onset of functional de-
cline. In the setting of trauma, injuries to bone and/or carti-
lage, are almost always accompanied by injuries of muscle; 
therefore, when surgical management is chosen for these 
patients, hMDSCs can be easily obtained and utilized intraop-
eratively by orthopaedic surgeons. New developments in this 
area include stem cell banking, whereby previously obtained 
stem cells can be retrieved and expanded at a later date when 
they are needed. This strategy allows for the transplantation 
of autologous stem cells in a single-stage procedure when the 
need arises. As we continue to expand our knowledge about 
MDSCs, their potential use as an adjunctive treatment for pa-
tients with musculoskeletal injuries could soon become a real-
ity.
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