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INTRODUCTION
Several features are unique to humans including; an efficient 
bipedal or upright walking, stable supine posture, an augment-
ed cranial capacity and a complex frontal lobe, ability to speak 
and interpret speech, complex tool-making abilities, an elabo-
rate social structure [1]. Cultural anthropologists and physical 
anthropologists consider that all these features contributed 
eventually to the development of a real culture, rather than 
a primitive culture (proto-culture) as seen in several primates 
species including chimpanzees [2-5]. It is estimated that the 
earliest of these traits to be established was the upright pos-
ture (bipedalism) in Australopithecine; including Lucy’s specie 
(Australopithecus afarensis) [6-9].

Numerous anatomic adaptations materialised independently 
across time; these changes exist cranially and post-cranially, 
principally serving the purpose of high energy efficiency. Com-
pared to apes and quadrupeds, humans spend much less en

ergy in bipedal locomotion [10]. Humans have also acquired 
longer lower limbs to serve the propulsive function during 
walking. Besides, humans have less body weight (BW) above 
the waist (68% of total BW in genus Homo vs. 82% in Apes) 
[11]. Additionally, the line of gravity passes behind the ears 
and slightly anterior to the spine, and anterior to the knees 
[10, 11]. Bipedalism appears to be unique and more advanced 
in humans, and particularly in genus Homo, than in all others 
primates. Musculoskeletal and anatomical adaptations can be 
specifically categorised into; general (1), post-cranial (2), and 
cranial (3). The changes started to be perfected in Australo-
pithecus afarensis at approximately 3.6 million years; it has 
been extensively studied via the Laetoli footprints discovered 
by Mary Leaky in 1978 near Olduvai gorge in Tanzania [12, 13]. 
On the other that hominids adaptations, particularly pelvic re-
designing, were far different for example that of Oreopithecus 
bambolii [14].
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It is important to bring the attention of those who read this 
manuscript that the purpose of this review is not to take sides 
neither with the theory of Darwinian’s evolution nor the the-
ory of intelligent design. The renowned Darwinian evolutions 
by Charles Darwin and Alfred Russel claims that the organic 
lifeforms are in a constant and a slowly progressive evolution 
across vast aeons of time, and all species had common ances-
try [15-17]. On the other hand, other scholars claim the the-
ory of an intelligent design of life and humans to be specific, 
and that randomness is not destined to create an intelligent 
and an aware creature like the modern humans  [18-20].

General Modifications

Bipedal walking in humans is estimated to be at least 75% less 
demanding for energy than both quadrupedal and bipedal lo-
comotion in chimpanzees [7, 21, 22]. There was a change in 
lower limb length and the leg length specifically, the purpose 
is to provide an efficient lever mechanism in pushing (propel-
ling) the body forward, and to reduce the need for the mus-
cular efforts during the swinging phase of upright walking [23-
25]. On the other hand, the upper limbs were excluded from 
locomotions in humans, except in infancy. Hence, the upper 
limbs, particularly the hands, became optimised to carry and 
manipulate objects with high manual precisions. The implica-
tions of this change in motor function had led to a reduction 
in the ratio of humerus-to-femur length.

Humans have a different distribution of weight above and be-
low the level of the waist; it is estimated the about 68% of the 
total body weight in humans (versus 82% in apes) is located 
above the waist [11]. Furthermore, the line of gravity is lo-
cated slightly anterior to the vertebral columns and the knees 
[10, 11, 26].

Post-Cranial Adaptations

Post-cranial adaptations were of paramount importance for a 
coherent and a cost-effective bipedal form of locomotion. The 
foot has evolved to function as the propulsive organ and of 
no grasping functionality; the heal became enlarged and po-
sitioned beneath the centre of gravity, the toes were shorter 
and more straight (not for grasping), the hallux became fully-
adducted and non-apposable [27, 28]. It can be deduced from 
the Laetoli footprints (Figure 1) of Australopithecus afaren-
sis that the body weight was primarily transmitted down via 
the line of gravity to; the heel, the ball of the foot, the lateral 
foot border, and the big toe (hallux). Though the foot became 
arched, with two longitudinal arches and one transverse arch, 
it became more rigid when compared to monkeys, apes, and 
non-human primates [13, 27, 28]. Numerous pathologies may 
occur in the foot including, osteoarthritis, pes planus (flat 
foot), and hallux valgus; all these can interfere with the critical 

biomechanics involved in walking [29].

Figure 1: Three-dimensional scans of experimental footprints (a, b) and a 
Laetoli footprint (c) (Raichlen et al., 2010).

The knee became bigger, with a larger surface area (SA) of 
femoral-tibial condyles. Compared to apes, the condyles are 
more flattened and of longer anteroposterior (AP) diameter 
[30, 10]. Furthermore, the lateral femoral condyle possessed a 
unique lip to prevent lateral displacement (dislocation) of the 
patella from the patellofemoral unit; this lateral displacement 
occurs due to the pulling effect quadriceps femoris muscle in 
the presence of a valgus angle of the knee. The knees were al-
lowed to be fully extended during the swinging phase of walk-
ing which potentiates propulsion from the ground. The knees 
developed a valgus angle (Q angle), thus positioning the knees 
right underneath the centre of gravity, which also enabled the 
knee to be locked in full extension, which can be maintained 
for an extended period of time while requiring a minimal mus-
cular effort [31]. 

At the hip, the surface area of the coxo-femoral (hip) joint be-
came increased, while the femur developed a conspicuous 
angle of torsion-inclination (Figure 2) including the collodiaphy-
seal angle to accommodate tensile, compressive, and torsional 
forces across the femoral neck and head [30, 32]. The cortex of 
the femoral neck became more thickened inferiorly; its trabecu-
lar pattern was rearranged to prevent and reduce the incidence 
of catastrophic fractures of the femoral neck [33]. The iliopsoas, 
the most powerful flexor muscle of the hip, became more de-
veloped and an imprint was created in front the coxal bone in 
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relation to the iliopubic eminence [30].

Figure 2: The angle of torsion of femur: normal condition (a) and pathologi-
cal conditions (b-d) (Musculoskeletal Key, 2016).

At the pelvis, there was an enlargement of the sacroiliac joints 
connecting the axial to the peripheral skeleton, both joints 
(bilaterally) became in a more precise alignment with; the ac-
etabulum of the innominate bone (1), and the line of gravity 
(2). The ilia became modified in shape from long and narrow 
to short and broad. Additionally, there was broadening of the 
pelvis, the sacrum became broader with the sacral ala ex-
panded more laterally, the sacrum also became more inclined 
backwards in continuity with lumbar lordosis, thus the volume 
of the pelvic cavity became significantly larger, these changes 
are more evidently noticed in females in an aim to accom-
modate the presenting part of the newborn baby at the time 
of delivery [34]. The ischial spines became more prominent 
medially providing robust attachments for the sacrospinous 
and sacrotuberous ligaments, which lead to the formation of 
a basin-like support for abdominal viscera; this basin-like sup-
port relies on the thoracic cage in quadrupeds [35, 34]. One 
of the most significant changes in the pelvis took place at iliac 
blades (Figure 3); the blades rotated axially, thus repositioning 
the anterior glutei muscles (gluteus medius and gluteus mini-
mus) more anteriorly, while the gluteus maximus (the most 
powerful hip extensor muscle) was fixed posteriorly to persist 
as an extensor muscle of the coxo-femoral joint, thus prevent-
ing the body from pitching forward. The new post of anterior 
gluteal muscles (Figure 3 and 4) enabled them to function as 
the main abductor muscles of the hip joint, which led to an 
efficient and an accurate tilting of the pelvis during walking. 
Finally, the anterior iliac spines became robust, for anchora-
geof sartoriusand rectus femoris, which enabled these two 
muscles to function as stronger flexors of the thigh [6].

Figure 3: Superficial dissection of right lower limb (3a, left image) show-
ing gluteus maximus, iliotibial tract, and tensor fascia lata. Deep dissec-
tion of left lower limb (3b, right image) showing the anterior glutei; gluteus 
medius and gluteus minimus, both muscles are abductors of the thigh in 
humans.

Figure 4: Gluteal muscles arrangement around the coxofemoral joint in a 
chimpanzee (a) and an Australopithecus afarensis (b) (Berge, 1994).

The vertebral column developed four curvatures in the sagittal 
plane; cervical, thoracic, lumbar, and sacral. It was Leonardo 
da Vinci who had 1st studied the double-Sigmoid curvature of 
the spinal column [36-38]. The aim of this double-S curvature 
of the spine is to withstand compressive forces more efficient-
ly and to function as a shock absorber. The combined lumbar 
lordosis and thoracic kyphosis have positioned the centre of 
gravity directly above feet, preventing the body from toppling 
forward during walking. Moreover, the size of vertebrae, par-
ticularly the vertebral bodies and their facet joints, was signifi-
cantly increased as we go down the spinal column till reach-
ing the 1st piece of the sacrum (Nakatsukasa, Hayama, and 
Preuschoft, [39-41].

Cranial Adaptations

These adaptations were significantly less numerous and less 
vital when compared with post-cranial adaptation. The head 
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has become well positioned and accurately balanced on top 
of the cervical segment of the vertebral column; this has oc-
curred due to the central positioning of the foramen magnum 
in relation to the anterior-posterior (AP) diameter of the cra-
nium. Furthermore, the face has become orthognathic rather 
than prognathic as in non-human primates and Australpethi-
cines. There was also a reduction in the amount of muscular 
mass of neck extensors. Similarly, there was a reduction of the 
supra-orbital ridges and its functioning occipitofrontalis mus-
cle [30]. The endocranial capacity has significantly increased 
up to 1500 cubic centimeters over the period from 2.4 to 0.5 
million years ago million year ago (Mya), this has also led to a 
change in the weight distribution within the cranium around 
the pivotal atlanto-occipital joint [42-45].

CONCLUSION

The upright walking, also known as bipedalism, is not strict 
feature for humans. However, a stable bipedal stance and 
an energy-economic bipedal form of locomotion are unique 
in humans compared with the large apes and non-human 
primates. It is a shared biomechanical trait between several 
different species of human and non-human primates. How-
ever, bipedal upright walking seems to be far evolved and 
more crafted in an advanced way in genus Homo, particularly 
in modern humans. The erect bipedal posture and locomo-
tion were not easily achieved by humans; the evolutionary 
timeline has struggled to intelligently design a bold stance, 
and engineer an energy-efficient bipedalism. Nevertheless, 
this economic characteristic of locomotion was also accom-
panied by several pathologies affecting multiple elements of 
the musculoskeletal system including; the vertebral column, 
the hip joint, and the knee joints. Arthritis is one of the most 
devastating conditions affecting the musculoskeletal system, 
which simply occur as a consequence of the ageing process 
and excessive use of the joints.

In this mini-review, the anatomical and biomechanical proper-
ties of human adaptations for bipedal walking were explored; 
these included cranial and postcranial adaptations and some 
other miscellaneous adaptation. It is apparent that adapta-
tions at the level of the spine, pelvis,hip, andknee joint were 
the most critical for a successful bipedal locomotion. Each of 
these adaptations possibly occurred independently from the 
other and in a non-simultaneous fashion across aeons of the 
evolutionary timeline. Perhaps, bipedalism is the oldest of the 
unique traits in humans; other adaptations include; advanced 
tool-making abilities, progressively enlarged frontal lobe ca-
pacity, culture, verbal and comprehensive linguistic abilities, 
and written language.
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