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ABSTRACT
Background and objectives: The European Union regulation for Blood Banks does not require the evaluation of measure-
ment uncertainty in virology screening tests. However, its assessment is mandatory for any blood establishment with tests or 
methods accredited to ISO 15189 specifications. Measurement uncertainty is defined in the VIM and with the methodology 
principles published in the GUM can be uniquely determined for results expressed as a numerical quantity. Therefore, an 
alternative approach is required to compute the uncertainty of the binary outcome, recognized as the “diagnostic uncer-
tainty.” This article discusses and proposes alternative (to GUM) models intended for the evaluation of an immunoassay for 
the screening of anti-HIV-1+2 antibodies and HIV-1 p24 antigen. However, the suggested methodology can be applied to any 
other test expressing binary results.

Materials and methods: A systematic review of the literature succeeded such as data collection in research for an anti-
HIV-1+2/HIV-1 p24 immunoassay, and the application of the Bayesian statistics, principally mathematical models of diagnos-
tic accuracy including diagnostic sensitivity, diagnostic specificity, and the related alpha-error, and beta-error. The area under 
the ROC curve can also be considered on the manufacturing stage or for “in-house” tests.
Results: Se[%] = 100, Se[%] ɛ [86.2, 100], beta error = 5%; Sp[%] = 99.3, Sp[%] ɛ [97.4, 99.8], alfa-error = 5%; OA[%] = 98.7%, 
PA[%] = 95.8%, PA[%]  ɛ [87.9, 100], NA[%] = 98.9%, NA[%]  ɛ [97.8, 99.9]; AUC = 0.99, AUC ɛ [0.99, 1.00]
Conclusion: The results show that the diagnostic accuracy can be discussed on uncertainty-based thinking. It is demonstrat-
ed that each estimator has uncertainty associated, stated by the alpha-error and beta-error to the diagnostic sensitivity and 
diagnostic specificity for the absolute results, respectively, and the significance level for the 95% CI.
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INTRODUCTION

In medical laboratories, tests expressing binary results, i.e., 
positive/negative, present/absent, true/false, are referred to 
as “qualitative tests.” The binary results can be only directly 
measurable or can be the result of the classification of a 

numerical quantity result in an ordinal scale for a certain cut-
off. The Vocabulary of International Metrology (VIM) defines 
“measurement uncertainty” as the “non-negative parameter 
characterizing the dispersion of the quantity values being 
attributed to a measurand, based on the information used” 
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(2.26 of [1]). Therefore, it is not intended to qualitative values, 
metrologically refereed as “nominal property” (1.30 of [1]). 
ISO/IEC 17025, for the accreditation of testing and calibration 
tests or methods in laboratories, is published in 1999 [2]. It 
is the first international standard to require the determina-
tion of measurement uncertainty. Later, ISO 15189 purposed 
specifically for the accreditation of medical laboratory tests 
or methods considers that the medical laboratory  “shall de-
termine the uncertainty of results, where relevant and pos-
sible” [3]. The present ISO 15189 edition requires its deter-
mination and also recommends that laboratories define the 
performance requirements for measurement uncertainty and 
regularly review their estimates [4]. The European Union [5-
9] and the US [10] agencies of Blood Banks do not require its 
evaluation.

On the risk-based thinking perspective (0.3.3 of [11]), the lab-
oratorian is encouraged to consider “the effect of uncertainty” 
(3.7.9 of [12]) in quality control phases, such as method vali-
dations. Probably, it is somewhat a complex challenge since 
the technical documents available on measurement uncer-
tainty just include modeling and/or empirical approaches for 
quantitative values. They do not integrate alternative method-
ologies to compute the diagnostic uncertainty of the qualita-
tive tests results. Several definitions have been proposing of 
“diagnostic uncertainty,” differing due to its application. Since 
the scope of this paper is HIV qualitative tests or methods, let 
assume the description suggested by Pereira et al. (2015) (13, 
5.3.1 of [14]) as “the risk of false results.” [13] also presents 
an uncertainty vision in the diagnostic accuracy estimates. 
Nonetheless, the determination of measurement uncertainty 
is computed in a paper by Pereira et al. (2016) to a screening 
immunoassay [15]. The standard measurement uncertainty 
(2.30 of [1] is used to compute the “gray zone” [16], not to 
evaluate the uncertainty of the binary results.

Although the general metrology recommends using VIM ter-
minology, it is seldom used for virology tests since it does not 
contain the appropriate vocabulary. Fuentes-Arderiu [17] and 
Dybkaer [18] have proposed terminologies suitable for quali-
tative tests, but they remain no well recognized in the med 
lab. This article adopts the terminology particular to those 
methods, usually accepted by the Clinical Laboratory and 
Standards Institute (CLSI) [19].

This paper discusses and suggests a methodology to estimate 
the diagnostic uncertainty of qualitative results using Bayes-
ian statistics.

METHODS AND MATERIALS
A review of the literature is done. The data collection in re-

search for an anti-HIV-1+2/HIV-1 p24 immunoassay is taken 
from the Laboratory of Transmissible Agents, Blood and Trans-
plantation Center of Lisbon, Portuguese Institute of Blood and 
Transplantation (PIBT), Portugal. The human serum or plasma 
samples are assayed in Prism® HIV Ag/Ab Combo (Abbott Di-
agnostics, Abbott Park, IL, USA) [20]. The assay is an in vitro 
two-step sandwich chemiluminescent immunoassay for the 
measurement of the concentration of antibodies to the Hu-
man Immunodeficiency Virus (HIV) type 1 (HIV-1) and/or type 
2 (HIV-2) and/or HIV p24 antigen. Antibodies and antigen can 
be detected in serum or plasma of individuals infected with 
HIV. The Prism® HIV Ag/Ab Combo assay uses microparticles 
coated with recombinant HIV-1/HIV-2 antigen and monoclo-
nal HIV p24 antibody as a solid phase which binds possible 
HIV antibodies and/or antigen present. After incubation and a 
washing step, acridinium labeled conjugates, HIV-1 synthetic 
peptide, and HIV p24 antibodies are added. The occurrence of 
complexes is determined by addition of an alkaline hydrogen 
peroxide solution. The chemiluminescent signal is proportion-
al to the level of the anti-HIV-1 and/or anti-HIV-2 antibodies 
and/or HIV p24 antigen present in the sample. Determining 
the level of the anti-HIV-1/anti-HIV-2 antibodies and/or HIV 
p24 antigen is however mostly a screening to categorize a 
blood donor as HIV-infected or not. The test is calibrated us-
ing some plasma samples from subjects not infected with HIV 
as negative controls and some plasma samples from persons 
infected with HIV as positive controls. The reagent manufac-
turer defines a procedure for computing the cutoff value for 
the number of emitted photons between positives and nega-
tives. This point is analogous to the clinical decision limit.

Bayesian statistic when the diagnosis is known

Diagnostic accuracy methods measure the agreement be-
tween the binary results and the diagnostic accuracy criteria 
(i.e., disease/non-disease) (5.3 of [21]). A Bayesian probability 
framework is adopted. The patients’ samples should be care-
fully selected to prevent “spectrum bias.” This phenomenon 
occurs when the “bias between estimated test performance 
and true test performance when the sample used for evaluat-
ing an assay does not properly represent the entire disease 
spectrum over the target (intended-use) population” (4.2 of 
[22]). If the diagnosis is unknown, a comparative method is 
used to measure the degree of concordance between both 
binaries (10.2 of [21]).

The measurement of the percentage of true-positive results 
among the test results for a sample known to be positive for 
the test is recognized as “diagnostic sensitivity” Se[%] is mea-
sured through the mathematical model:
[TP/(TP+FN)]·100                                                                                   (eq. 1)
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where TP is the number of true-positive results, and FN is the 
number of false-negative results. On the non-disease sample, 
the percentage of true-negative results among the test results 
for a sample known to be negative for the test is known as 
“diagnostic specificity” Sp[%] which is measured through the 
model:

[TN/(FP+TN)]·100                                                                               (eq. 2)

where TN is the number of true-negative results, and FP is the 
number of false-positive results (5.3 of [21]). Transfusion safe-
ty requires that Blood Bank immunoassays should have a high 
sensitivity to ensure that results from infected donors have a 
high probability to be expressed as “positive.” Thus, the prob-
ability of generating false negative results (beta-error) should 
be minimized at the expense of having a larger probability of 
generating false positive results (alfa-error). False positives 
have certainly a negative impact (waste) in the laboratory’s 
budget since initially positive samples are re-tested using 
more accurate and expensive methods. But this fact is not re-
lated to a lack of safety. Table 1 represents a contingency table 
to measure diagnostic sensitivity and specificity such as the 

corresponding alfa-error and beta-error. 

Table 1: 2x2 Contingency table for diagnostic accuracy.

Diagnostic accuracy criteria

Candidate test 
results

Positive

(Disease,

D = 1)

Negative

(Non-disease,

D = 0)

Total

Positive

(y = 1)
True-positive 
results (TP)

False-positive 
results (FP)

(alfa-error)
TP + FP

Negative

(y = 0)

False-negative 
results (FN)

(beta-error)

True-negative 
results (TN) FN + TN

Total TP + FN FP + TN N

Let assume a sampling of infected individuals. The diagnosis 
is based in the clinical diagnosis or positive results from a ref-
erence “gold-standard” test. The infected sampling includes 
specimens with all types and sub-types of Human Immuno-
deficiency Virus (HIV) with epidemiological prevalence in the 
geographic area of the PIBT. If the sampling is not representa-
tive of the infected population, a bias effect is induced, and 
the sensitivity could be overestimated. The uninfected sample 
does not include specimens with known interference fac-
tors, including the following: (a) pre-analytical effects such 
as anti-coagulant, bilirubin, erythrocytes, and hemoglobin; 
(b) disease effects; and, (c) drugs’ effect. The interferents can 
contribute to misclassification of the binary results leading to 

unrealistic diagnostic accuracy.
The blood donors’ population is the best source for the non-
infected sampling since the donors have a long known medical 
screening record.
CLSI EP12-A2 (9.3 of [21]) suggests that test examinations for 
the diagnostic accuracy evaluation should be performed in re-
producibility conditions during 10 to 20 days.
Low and high limits for the test sensitivity 95% confidence in-
tervals (CI) can be computed respectively from the formulas:

LLse[%]=(Q1,se-Q2,se)/Q3,se·100                                                 (eq. 3)

HLse[%]=(Q1,se+Q2,se)/Q3,se·100                                                (eq. 4)

where Q1,se=2·TP+1.962, Q2,se=1.96·(1.962+4·TP·FN/(TP+FN))½, 

and Q3,se=2·(TP+FN+1.962) (10.1 of [21].

Low and high limits for the test specificity 95% CI are given 

respectively by:

LLsp[%]=(Q1,sp-Q2,sp)/Q3,sp·100                                                  (eq. 5)

HLsp[%]=(Q1,sp+Q2,sp)/Q3,sp·100                                                   (eq. 6)

 where Q1,sp=2·TN+1.962; Q2,sp=1.96· (1.962+4·FP·TN/(FP+TN))½, 
and Q3,sp=2·(FP+TN+1.962) (10.1 of [21]. 

Agreement when the comparator is other than diagnostic ac-
curacy criteria

Obviously, if the diagnosis is unknown, the diagnostic accu-
racy cannot be measured. However, identical models can be 
used to measure the agreement of test results. Generally, this 
approach is suggested for “in-house” tests when the diagno-
sis based on a consensual logic is unavailable. A comparative 
test is required for this evaluation. The diagnostic accuracy is 
known, and the sensitivity and specificity must meet the med-
ical laboratory claims.

Table 2 shows a contingency table as the basis for the deter-
mination of the agreements. The overall agreement OA[%] is 
the percentage of the positive and negative results agreement 
between the two tests and is given by:

Table 2: 2x2 Contingency table for the agreement of binary results.

Comparative test

Candidate test 
results

Positive

(x = 1)

Negative

(x = 0)
Total

Positive

(y = 1)
a

b

(alfa-error)
a + b

Negative

(y = 0)

c

(beta-error)
d c + d

Total a + c b + d n
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(a+d)/n·100                                                                                           (eq. 7)

where “a” is the number of candidate test positive results 
among the positive results in the comparative test, “d” is the 
number of candidate test negative results among the nega-
tive results in the comparative test, and n is the number of 
samples.

The positive agreement PA[%] is the percentage of the posi-
tive results agreement between the two tests and is given by:

a/(a+c)·100                                                                              (eq. 10) 

where “c” is the number of candidate test negative results 
among the positive results in the comparative test.

Low and high limits for positive agreement 95% CI can be com-
puted, respectively, from the following mathematical models:

LLPA[%]=(Q1,PA-Q2,PA)/Q3,PA·100                                          (eq. 11)

HLPA[%]=(Q1,PA+Q2,PA)/Q3,PA·100                                         (eq. 12)

where Q1,PA=2·a+1.962, Q2,PA=1.96·(1.962+4·a·c·/(a+c))½, and 

Q3,PA=2·(a+c+1.962) (10.2 of [21])..

Finally, the negative agreement NA[%] expresses the percent-
age of the negative results agreement between the two tests 
and is given by:

d/(b+d)·100                                                                      (eq. 13) 

where “b” is the number of candidate test positive results 
among the negative results in the comparative test.

Low and high limits for negative agreement 95% CI are respec-
tively given by:

LLNA[%]=(Q1,NA-Q2,NA)/Q3,nA·100                                           (eq. 14)

HLNA[%]=(Q1,NA+Q2,NA)/Q3,NA·100                                                (eq. 15)

where Q1,PA=2·d+1.962, Q2,NA=1.96·(1.962+4·b·d·/(b+d))½, and 
Q3,NA=2·(b+d+1.962) (10.2 of [21]).. “a”, “b”, “c”, and “d” are 
respectively equivalent to diagnostic accuracy “true positive”, 
“false positives”, “false negatives”, and “true negatives.”

RESULTS AND DISCUSSION

A diagnostic accuracy application for diagnostic sensitivity and 
diagnostic specificity determination is made (nD1 = 24, nD0 = 
278). In Blood Bank principally the claimed diagnostic accu-
racy should be according to what published for a particular 
method or its generation. Let assume the sensitivity goal as 
100%, and the specificity goal of 98%. The 95% CI lower limit 
should be ≥ 85% for sensitivity and ≥ 90% for specificity . The 
claimed limits are selected according to the intended use of 
results. Let assume that the HIV results are used on the valida-

tion of blood components. False negative results have a high 
risk to cause post-transfusion infection. The estimations of the 
diagnostic accuracy are shown in Table 3. The results met the 
performance requirements.

Table 3: Results of the diagnostic sensitivity and diagnostic specificity for 

a screening immunoassay to detect anti-HIV-1+2/HIV-1 antigen, Prism® 
HIV Ag/Ab Combo (Abbott Diagnostics, Abbott Park, IL, USA).

95% CI

Se[%]=24/(24+0)·100=100
LLSe[%]=(51.8-3.8)/55.7·100=86.2

HLSe[%]=(51.8+3.8)/55.7·100=100

Sp[%]=276/
(2+276)·100=99.3

LLSp[%]=(555.8-6.7)/563.7·100=97.4

HLSp[%]=(555.8+6.7)/563.7·100=99.8

Since sensitivity and specificity are equal to 100% and 99.8%, respec-

tively, the absolute results meet the claims. Also, the required CI low 

limits are reached: 86.2%, and 97.4%, respectively. Since these esti-

mates can be only applied to the samplings, the false negative rate 

cannot be claimed to be a type of “diagnostic uncertainty.” It is due 

to the uncertainty to be usually associated with a probability of de-

fect recognized as “risk.” Otherwise, the false negative rate is not a 

chance but a descriptive statistic.

The 95% CI is interpreted as the interval related to the chance of a 

person from 95% of the infected population to be classified as posi-

tive for sure. On this CI, the beta-error is 0.05 or 5% representing 

the risk of this null hypothesis to be false. Similarly, on the 95% CI 

of specificity, the alfa-error is 0.05 or 5% signifying the risk of the 

alternative hypothesis to be false. Statistically, the CI represents the 

values for subjects for which the false rates are not statistically sig-

nificant at the confidence level of 5%.

The 95% CI can be interpreted on risk-based thinking as an uncertain-

ty estimator. As the interval amplitude increases, the diagnostic un-

certainty directly rises, i.e., the risk to classify false results increases. 

The interpretation is to some degree similar to what happens with 

the expanded measurement uncertainty (2.35 of [1]).

The diagnostic accuracy could also be used for the determination of 

risk components such as false positive results ratio or false negative 

results ratio. Every time a medical laboratory claims a 95% CI mini-

mum requirement, the number of samples to determine diagnostic 

accuracy must be considered since it is a limitation of the claim. For 

example, if the number of patients in the sampling is 29, the low limit 

for the 95% CI is 88.3%. Consequently claims higher than 88.3% are 

unrealistic, since the low limit is dependent not only by the number 

of false results but also by the number of the samples.  For a higher 

claim, the minimum number of samples must be increased.

The study should be reevaluated if significant epidemiological chang-

es are reported. Note that the diagnostic accuracy single results can-

not be inferred to the population of the samplings. The inference is 

only associated with the 95% CI. Also, it must be well known that 
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the inference is to a population with the same epidemiological and 

biological characteristics of the tested samples. Anyway, it is strongly 

suggested the use of the 95% CI since it allows a more powerful eval-

uation of the test performance than the single results.

The drawback of Bayesian probabilities approach is its susceptibility 

to inappropriate samplings. For example, a small number of samples 

leads to CI with a relatively large amplitude. This condition decreases 

the statistical power of the study. Otherwise, incorrectly classified 

samples in the supposed group of healthy samples induce errors in 

the specificity estimate. Also, an infected sample that is not repre-

sentative of the agent prevalence in the population induces a spec-

trum bias in the estimates.

For the results agreement model, the same samples are used than 

for the diagnostic accuracy calculus (nPositive = 24, nNegative = 278). Let 

assume that the overall agreement, positive agreement, and nega-

tive agreement shall be ≥ 98%. The overall agreement and negative 

agreement CI low limit shall be ≥ 80%, and the positive agreement CI 

low limit shall be to≥ 85%.

Table 4 shows the estimations of results agreement and indicates 

that the performance requirements have been met. Let emphasize 

that results agreement of a candidate and a comparative tests pair 

should be only determined if the diagnosis is unknown. The consid-

erations regarding agreements must be taken with care, since there 

they can be misunderstood. Occasionally a bad practice is adopted 

- diagnostic accuracy is computed when sampling with a known di-

agnosis is not used. The results could be critically biased since the 

comparator has a poor diagnostic accuracy.

Table 4: Results of the agreement of binary results for a screening immu-
noassay to detect anti-HIV-1+2/HIV-1 antigen, Prism® HIV Ag/Ab Combo 
(Abbott Diagnostics, Abbott Park, IL, USA).

95% CI

OA[%]=(23+275)/302·100

=98.7

-

-

PA[%]=23/(23+1)·100=95.8 LLPA[%]=(49.8-5.7)/55.7·100=87.9

HLPA[%]=(49.8+5.7)/55.7·100=100

NA[%]=275/
(3+275)·100=98.9

LLNA[%]=(553.8-7.8)/563.7·100=97.8

HLNA[%]=(553.8-
7.8)/563.7·100=99.9

Such as on the diagnostic accuracy estimates, the 95% CI can 
be interpreted as an uncertainty estimator using the same 
logic. The performance requirements should follow the same 
principles than on the diagnostic accuracy model.

Receiver operating characteristic curve/area under the curve
The receiver operating characteristic (ROC) curve, and the 
area under the curve (AUC) are suggested to be applied to 
determine the best cutoff for a particular test. Usually, it is ap-
plied in the manufacturing research and development (R&D) 

phase or to “in-house” tests in the med lab. The sample con-
cept considered in the diagnostic accuracy is applied to the 
AUC estimate. The ROC plot shows the entire spectrum of 
sensitivity-specificity trade-offs per hypothetical cutoff value 
(discriminators).

The non-parametric Mann-Whitney U statistics compute the 
AUC also acknowledged as the Mann-Whitney-Wilcoxon test 
[23], and the concordance measure (4 of [24]) is similar to the 
trapezoidal model area. Other non-parametric methods such 
as Bamber [25], Hanley and McNeil method [26], and DeLong 
[27] models also offer consistent AUC results. While not ignor-
ing the usefulness of this technique, since it can infrequently 
be practiced in medical laboratory tests, the mathematical 
models are not discussed further here.

Figure 1 shows the ROC curve for the anti-HIV-1+2/HIV-1 p24 
antigen screening test. The samplings are the same than used 
in the diagnostic accuracy case. The curve suggests that the 
test is able to predict the true result of the samples accurately. 
The perfect test point (0, 1.00) is achieved with a cutoff of 
1.00.

Figure 1: ROC curve for a screening immunoassay to detect anti-HIV-1+2/
HIV-1 antigen, Prism® HIV Ag/Ab Combo (Abbott Diagnostics, Abbott 
Park, IL, USA) with an AUC = 0.99, AUC ɛ [0.99, 1.00]

Let assume the next claims: AUC ≥ 0.95, and AUC ɛ [0.90, 
1.00]. AUC of 0.99 is obtained, ranking as an “outstanding 
discrimination” test [28]. Since the test used is commercial 
with a known cutoff, the AUC is considered only for demon-
stration. AUC ɛ [0.99, 1.00] for what the CI is accepted since 
the claimed [] contains it. The low limit is close to 1.00 which 
strengthens the power of the capability to discriminate be-
tween true binary results. Identically to the previous evalu-
ations, it is emphasized the use of the 95% CI instead of the 
single value for a more realistic evaluation of the capacity of a 
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specific test to discriminate true results. Identically to the di-
agnostic accuracy, if the samplings do not have the same char-
acteristics of the population, the AUC is biased. Once more 
time, the 95% CI somewhat represents the uncertainty of the 
AUC. Larger intervals represent a test with a measured weak 
capability to discriminate results on the inferred population. A 
con of the AUC con is that it only measures discrimination in 
the samplings and it is not related uniquely to the infected or 
non-infected persons.

Moreover, since the sampling of infected individuals is avail-
able, the results of the study can be “medically traceable.” 
In some conditions, the “medical traceability” is difficult to 
achieve due to the “physicochemical complexity” and “hu-
man variability” of patient samples. So, these studies can be 
not harmonized since there are not available samplings with 
known diagnosis. For a thorough discussion of traceability in 
medical laboratories, please refer to [29,30]. Consequently, 
screening immunoassays for anti-HIV are classified as “meth-
ods without traceable calibrators” for what the diagnostic ac-
curacy is untraceable.

All the statistical models are sensitive to outliers. So, the labo-
ratorian should implement a methodology to minimize the 
risk of misestimation. For instance, use a statistical test such 
as the Grubbs test [31] when applicable, or alternatively hav-
ing a second operator revising the results registration.

CONCLUSION

In summary, the diagnostic uncertainty depends on the diag-
nostic accuracy assessment. The same fact is demonstrated 
by the agreement of results and the AUC. Just the 95% CI 
can be viewed on the uncertainty logic. The interpretation is 
analogous to what happens with the expanded measurement 
uncertainty. Therefore, the featured models enable the labo-
ratory to evaluate the diagnostic accuracy from a risk-based 
thinking perspective.
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