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INTRODUCTION 
Myopia has an estimated prevalence of 41% among adults in 
the United States, and the myopia prevalence is increasing 
Vitale et al. [1].  Among Asian populations, the prevalence is 
even higher with rates as high as 60% among adolescents age 
11 to 17 yrs in China [2-4].

The course of myopia typically follows a pattern that begins 
with an initial emmetropic phase, followed by a myopic onset 
that usually occurs in the early school years, which is followed 
by a myopic depression that tends to stabilize in the mid to 
late teenage years [5]. These are general trends, early or late 
onset myopia is also possible and a more modest progression 
may occur during early adulthood before fully stabilizing.

Figure 1a: The transfer function that describes emmetropization is F(s) = 1/ 
(ks+1), where k is the time constant of each individual and s is the complex 
variable. G(s) = 1/ks is the forward function of the transfer function.

Several facts are established that allow an understanding of 

refraction development of the eye as a system. Emmetropiza-
tion and refractive development is a feedback process in hu-
mans [6-11]. There is now considerable evidence showing 
that there is feedback control of emmetropization.

Emmetropic or uncorrected eyes follow an exponential devel-
opment of refractive error in humans, as shown in Figure 1a. 
An exponential development is the response of a first-order 
feedback system to a constant-level step input signal [9, 10]. 
Such a 1st order model will quantitatively model not only the 
mechanism of emmetropization, but also the effect of lenses 
[6, 7].

The refractive state of the eye is alterable with external stimuli, 
including lid suture. (Meyer et al. [12]; Raviola & Wiesel [13]; 
Greene & Guyton [14]; Hoyt at al. [15]; Wallman & Winawer 
[16]). Medina & Fariza [8] showed that corrective lenses ap-
plied to the eye are step input stimuli to the emmetropization 
system and that the response of a first order system (Feed-
back Theory) to an input determined by the power of the cor-
rective lenses fits refraction data from ametropic subjects that 
wore those lenses [8]. 

Medina [9, 10] showed that a myope that is fully corrected 
continuously places the emmetropization feedback system in 
an open loop condition, as shown in Figure 1b. Continuous 
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correction alters the feedback loop rendering it inoperative. 
He also found that refractive data from the eyes of 13 myo-
pic subjects followed straight lines as predicted by Feedback 
Theory, Figure 2. Fledelius presents distribution diagrams of 
onset age for myopia from age 6 to 27 (N=184 subjects), which 
can be compared to Figure 2 here [17].

Figure 1b: Open loop transfer function of the feedback system of transfer 
function 1/ (ks+1). Broken lines denote the loop is open. This open loop 
function describes continuous correction or visual form deprivation (con-

stant error). The variables are t, time and s, complex variable.

Figure 2 shows the refractive errors of right eyes of 13 myo-
pic human subjects versus age (symbols) and linear prediction 
of open loop system (solid lines). Myopia rates range from 
-0.2 to -1.0 D/yr. Correlation coefficients range from -0.907 
to -0.998, with a mean of <r> = -0.971, p<0.005. Three other 
similar studies from the literature report essentially the same 
myopia progression rates, Oakley & Young [18], Goss [19], and 
Gwiazda et al. [20, 21] for young individuals. Goss & Rainey 
et al. [22] report myopia rates (N=42 subjects) of -0.72 D/yr 
during the school year, compared with -0.39 D/yr during the 
summer months.

Figure 2: Refractive errors of right eyes of 13 myopic human subjects ver-
sus age (symbols) and linear prediction of open loop system (R/k, solid 

lines), from Medina [9, 10].

MATERIALS AND METHODS 

The clinical techniques and data reduction procedures em-
ployed to generate Figure 2 are described in Medina et al. 
[9, 10].  These straight-line trajectories are typical of juvenile 
progressive myopes.  The slope of these lines allows us to cor-
relate average myopia progression rate <R’> versus onset age 

t1 (Figure 3a).  Another benchmark indicator of myopia pro-
gression is the total myopia accumulated 5 years after onset, 
Figure 3b, graphed versus initial onset age.  Correlation coef-
ficient r and significance level p quantify the accuracy of the 
regression.

Figure 3a: Myopia progression rate vs. age of onset, r = - 0.77, p < 0.0025,        
< R’> = - 0.55 D/yr +/- 0.27 D/yr.

Figure 3b: Myopia level 5 years after onset vs. onset age, r = - 0.78, 
p<0.001, <R>= - 4.51 D. +/-1.28 D.

RESULTS
Figures 3a and 3b show that myopia rate and total acquired 
myopia 5 years after onset are strongly correlated with onset 
age, r = -0.77, p<0.0025, and r = -0.78, p<0.001 respectively. 
Average myopia onset age is <t1> = 10.6y +/- 5.4y (N=13).  Ini-
tial refraction at onset is on average <Ro> = -1.14D. +/- 0.55D, 
correlation with age of onset r = -0.30, p<0.25.    

DISCUSSION
These results indicate that the juvenile myope is twice as suscep-
tible to myopia progression at age 5 as at age 15 (-0.8 D/yr. versus 
-0.4 D/yr.) and twice as susceptible at age 10 as at age 18 (-0.6 D/yr. 
vs. -0.3 D/yr.). Likewise, at onset, the initial refraction at age 5 is ex-
pected to be 50% greater than at age 18, (-1.3 D. vs. -0.9 D. respec-
tively). Confirming these results it was recently found that the risk 
of high myopia can be predicted based on age of onset of myopia 
[23]. Feedback Theory predicts the results as it provides that the 
slope of the progression line is proportional to the myopia at onset.
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CONCLUSION 

Feedback Theory and the observations described here have some 
practical implications concerning the correction or under correc-
tion of myopes [24-28].
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