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INTRODUCTION 
Magnetoencephalography (MEG) is a functional neuroimag-
ing technique for mapping brain activity by recording magnet-
ic fields produced by electrical brain currents, using very sen-
sitive magnetometers and it gives improved spatial resolution 
with particularly high temporal resolution. Since the MEG sig-
nal is a direct measure of neuronal activity, its temporal reso-
lution is comparable with that of intracranial electrodes. MEG 
complements other brain activity measurement techniques 
such as electroencephalography (EEG), positron emission 
tomography (PET), and functional magnetic resonance imag-

ing (FMRI). It is a non-invasive method and uses no ionizing 
radiation, as opposed to PET. MEG can resolve events with a 
precision of greater than ten milliseconds (msec), while fMRI, 
can at best resolve events with a precision of several hundred 
milliseconds (msec). MEG is also being used to better localize 
responses in the brain. The responses in the brain before, dur-
ing, and after the introduction of stimuli can be mapped with 
greater spatial resolution than was formerly potential used 
with EEG [1-13]. 

The pineal gland controls the hormone system and at night 
it is releasing one important hormone the melatonin in the 
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Objective: In this study, we investigated the function of alpha and beta rhythms after visual stimulation using Magneto-
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Materials And Methods: Ten (10) Caucasian healthy volunteers (6 female, 4 male) aged (mean: 37.6±5.3) participated in 
the study. The subjects were measured with a 122-channel MEG system in a magnetically shielded room of low magnetic 
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Conclusion: The results suggest that the MEG is a efficacious modality in the investigation of alpha and beta rhythms after 
visual stimulation. This cortical activation might have applicability in modulation of brain status. This might be important 
to patients’ groups because the alpha rhythm could be used as a neurophysiological marker for the activity of the pineal 
gland.
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blood stream and from the blood stream to the brain. Sandyk 
reported a case of a patient with multiple sclerosis in whom 
visual perception worsened throughout the course of the day 
and improved at night [14]. These changes in vision appeared 
to correspond to the circadian secretion of melatonin which 
is coupled to the circadian temperature rhythms. Ter Huurne 
et al [15] investigated whether aberrant modulation of alpha 
oscillations contributes to attention problems in Attention-
deficit/hyperactivity disorder (ADHD) patients with the use 
of MEG. They suggested that aberrant modulations of alpha 
oscillations reflect attention problems because of ADHD and 
might be related to the neurophysiological substrate of the 
disorder. Babiloni et al [16] investigated if simple delayed re-
sponse tasks affect latency and amplitude of MEG midline al-
pha rhythms (6-12 Hz) in early dementia. They found that the 
alpha peak was later in latency in the demented and normal 
elderly subjects than in the normal young subjects and it was 
stronger in amplitude in the demented patients than in the 
normal subjects. Anninos et al [8] in a MEG study discussed 
the potential essential role of the pineal gland in the long term 
anticonvulsant effects of external artificial magnetic stimula-
tion because the pineal gland has been shown to be a magn-
etosensitive organ which forms part of a combined compass-
solar clock system and exerts an inhibitory action on seizure 
activity. Sandyk et al [17] based on MEG measurements sug-
gested that patients with nocturnal epilepsy or those experi-
encing exacerbation of seizures premenstrually may benefit 
from the administration of agents which block the secretion 
or action of melatonin.

The aim of this study was to investigate the function of alpha 
and beta rhythms after visual stimulation by means of MEG 
recordings because this cortical activation might have appli-
cability in the modulation of brain status and in clinical use. 

MATERIALS AND METHODS

Subjects

The MEG recordings were carried out in ten (10) Caucasian 
healthy volunteers (6 female, 4 male) (mean age: 37.6±5.3 
years) in a magnetically shielded room with a whole head 
122-channel biomagnetometer (model: Neuromag-122, Hel-
sinki, Finland) (Table 1) [1-13]. All subjects had normal visual 
acuity and were not on any medication. The first MEG mea-
sures represent the baseline without visual stimulation. After-
wards we applied visual stimulation with different information 
in order to find out how the brain elaborates them (Figure 1). 
Informed consent was obtained from the participants prior to 
the procedure. The research was approved by the Research 
Committee of the Democritus University of Thrace. 

Table 1: Volunteers’ profile (F:female, M:male).

A/A SEX AGE WEIGHT ETHNIC

1 F 35 71 Caucasian

2 F 43 75 Caucasian

3 F 39 70 Caucasian

4 F 45 65 Caucasian

5 F 39 69 Caucasian

6 F 30 76 Caucasian

7 M 40 85 Caucasian

8 M 38 78 Caucasian

9 M 39 90 Caucasian

10 M 28 79 Caucasian

Figure 1: The 122-channel MEG system in the magnetically shielded 
room. One of the images for the visual stimulation (small icon).

Data Acquisition

The MEG recordings were filtered with cut off frequencies at 
0.3 Hz and 40 Hz. The MEG sampling frequency was 256 Hz 
and the associated Nyquist frequency was 128 Hz. We took 4 
MEG recordings of 32 seconds each with 4 stimuli (icons). The 
images illustrated delicious sweets. As an experimental para-
digm one picture is illustrated in Figure 1 (small image). We 
preferred coloured stimuli instead of neutral ones in order to 
have more profound effects. The time interval between each 
stimulus was 1 min. The total experimental time was about 5 
min.

Data analysis

The MEG workstation software analyzes the MEG data and 
gives the isocontour field maps (ISO-fields) in the whole scalp. 
We used the Fast Fourier Transform (FFT) algorithm to obtain 
the power spectra of the MEG data. A software program has 
been developed in our lab in order to detect the 1st dominant 
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frequency of the power spectra of each channel after the ap-
plication of FFT on the MEG raw data and construct a map for 
its spatial distribution over the scalp. Different colours in the 
maps represent different dominant frequencies. The numbers 
in the map squares represent the 122 MEG channels in every 
parts of the brain area according to Table 2.

Table 2: This table shows the brain regions and the corre-
sponding channels.

Brain Regions Channels

Right Tem-
poral

1-14 , 111-120

Right Parietal 5-6,11-16,97-100, 109, 110 , 115-122

Left Temporal 43-50 , 55-62,67-74

Left Parietal 47-52,59-64,71-74,79,80,87-90

Frontal 17-42

Occipital 75-86,91-96 , 101-110

Vertex 13-16,49-54,61-66,73,74,89,90,99,100 ,117-122

RESULTS

The following results referred to the volunteer (no 8) as rep-
resentative.
(Figure 2) shows the ISO-fields without external visual stimu-
lation. (Figure 3A) exhibits the spatial distribution of the al-
pha rhythm (8-13 Hz) over the scalp for all the MEG channels 
without stimulation after the application of the FFT on the 
MEG raw data. (Figure 3B) shows the beta rhythm (14-25 Hz) 
before stimulus. We observed an activation of the channels 
between the frequencies 19-25 Hz due to thought processes. 
(Figure 3C) shows the overlapping power spectra from these 
122 channels after FFT. We viewed a dominant frequency at 
10 Hz that indicates the physiological state of the subject. The 
alpha rhythm is intense due to mental relaxation and blocked 
of attention. The alpha rhythm was located primarily at the 
occipital lobe (MEG channels: 75-86, 91-96, 101-110, Table 2). 

Figure 2: The scalp isocontour (ISO) field distribution without visual stim-
ulation at the left - right temporal, left - right parietal, frontal , vertex 
and occipital regions . The red and blue lines indicate the incoming and 

outgoing magnetic field.

Figure 3: Frequency distribution from all channels without visual stimula-
tion at all brain regions (Table 1). A) The spatial distribution of the alpha 
rhythm (8-13 Hz). Dominant alpha rhythm at the occipital lobe (MEG 
channels: 75 -86, 91-96, 101- 110). The numbers in each square repre-
sent the 122 MEG channels B) The spatial distribution of the beta rhythm 
(14-25 Hz). The squares represent the MEG channels C) Power spectra 
analysis: Overlapping the power spectra from all channels. Dominant fre-
quency at 10 Hz.

Afterwards we applied external stimuli such as images with 
different information (Figure 1). Figure 4 shows the ISO-fields 
with external visual stimulation. We showed an intense activa-
tion of the MEG signals all over the scalp. Figure 5A exhibits 
the spread of the alpha rhythm throughout the brain due to 
the stimulus without specific location. Figure 5B shows the 
behavior of the beta rhythm after stimulus. We observed a 
spread of the beta rhythm without specific location. The activ-
ity of the frequencies 19-25 Hz has been decreased. Figure 5C 
shows the overlapping power spectra from these 122 chan-
nels after FFT. We viewed an attenuation of the alpha rhythm 
due to the attention to the stimulus. Comparing Figures 2,4 
and Figures 3,5 we evaluated the alpha and beta activity in 
the maps before and after external visual stimulation at every 
region (Table 2).

A B
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Figure 4: The scalp isocontour (ISO) field distribution after 352,7 ms visual 
stimulus at the left -right temporal, left -right parietal, frontal , vertex and 
occipital regions. We observe an intense activation of the MEG signals. 
The red and blue lines indicate the incoming and outgoing magnetic field.

Figure 5: Visual stimulation after 352.7 ms. A) The alpha and the B) beta 
rhythm after optical stimulation at all brain regions (Table 1). The num-
bers in each square represent the 122 MEG channels C) Power spectra 
analysis : Overlapping the power spectra from all MEG channels. We 
observe an attenuation of the magnetic spectra power (fT2 /Hz) of the 
alpha rhythm as a result of stimulus.

DISCUSSION
From our measurements we extracted useful conclusions re-
garding the position and the intensity of the MEG recordings 
after the application of an external visual stimulus. Our raw 
data showed an intense activation of the MEG signals. This 
was clearly identified in the ISO-fields between (Figure 2 with-
out stimulus) and (Figure 4 with stimulus). Comparing Figures 

3,5 we observed an attenuation of the alpha rhythm at the 
occipital lobe and the widespread of the beta rhythm due to 
the visual stimulation. 

Recently, the alpha-band activity (10Hz) has drawn a lot of 
consideration. Lange et al [18] suggested that reduced alpha-
band power does not always predict improved visual process-
ing, but rather increased excitability. Some researchers found 
that the power of pre-stimulus alpha-band activity in parieto-
occipital areas was associated negatively with the individual 
perception in visual detection and discrimination tasks [19-
21]. Other researchers found that intermediate levels of pre-
stimulus alpha-power in the visual and somatosensory area 
increases perception and evoked responses while low and 
high levels have a negative effect [22-24]. Alpha-band power 
is reconciled by attention and has been associated to the inhi-
bition of task unrelated areas [24-27].

Okazaki et al [28] examined brain oscillatory responses related 
to visual perceptual change of short-term duration in the ab-
sence of morphologic change by MEG. Two types of stimulus 
conditions were created, the ‘face-target’ (F-T) condition and 
the ‘saxophone-target’ (S-T) condition. They found significant-
ly greater synchronization in the beta (14-30-Hz) frequency 
band, ranging from 250 to 450ms predominantly over the oc-
cipital and parietal regions, after stimulus alternation for the 
S-T condition than for the F-T condition. Kinsey et al [29] in a 
research study by MEG concluded that the role of alpha and 
beta activity in object processing might related principally to 
changes in visual attention.

In (Figure 5) we illustrated that the alpha and beta rhythms 
and the power spectra after 352.7 ms at the beginning of vi-
sual stimulation. An external stimulus prompts all the cortical 
neurons to fire simultaneously causing a spike to appear in 
some 300ms later. The alpha rhythm is classically described 
as a bilateral posterior rhythm of substantially constant fre-
quency in the range of 8-13Hz and is enhanced by mental 
relaxation and blocked attention. Since the full expression 
of alpha rhythm has been shown to occur during puberty, it 
is possible that the establishment of alpha rhythm is subject 
to neuroendocrine influences. Nocturnal plasma melatonin 
levels have been shown to decline progressively throughout 
childhood reaching a nadir in puberty. This progressive de-
cline in melatonin secretion during childhood facilitates the 
maturation of the alpha rhythm. Our study population was in 
adulthood (mean 37.6±5.3 years) because we had volunteers 
only at these ages. 

In a number of studies Anninos et al [1-3, 5, 7, 8, 30-33] using 
an electronic device demonstrated the significant effects of pi-
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co-Tesla (pT) (1pT=10-12 Tesla) external transcranial magnetic 
stimulation (pT-TMS) to patients with CNS disorders. Specifi-
cally, using an electronic device invented by them they were 
able to increase the abnormal (2-7Hz) frequencies of the brain 
activity towards frequencies of less than or equal to those fre-
quencies of the alpha frequency range (8-13Hz) of each pa-
tient [30]. It is known that magnetic fields modify the activity 
of the pineal gland, which has been shown to control dopami-
nergic, and endogenous opioid functions [34, 35]. In addition, 
exposure of an organism or biological material to magnetic 
fields has been reported to induce mutagenic, immunological, 
metabolic, endocrine, morphological, developmental, behav-
ioral and anticonvulsant effects [36, 37]. 

The monitoring of brain activity by MEG requires particularly 
sensitive sensors made superconductive by liquid helium and 
data acquisition in shielded rooms cutting out the ambient 
magnetic fields in order to obtain the best quality signals. The 
major limitation of the study is the high cost of the MEG sys-
tem and the liquid helium for its operation.

Our results shown that MEG is a valuable tool for the estima-
tion of the role of alpha and beta rhythms in healthy volun-
teers. The significant observation is that there is an intense 
activation of the MEG data and a decrease in the alpha and 
beta rhythms due to stimulus. This fact encourage the use of 
MEG for the estimation of the above rhythms in patients with 
CNS disorders (autism, dyslexia, personality disorders, epi-
lepsy, schizophrenia, Parkinson etc.). This might be important 
and helpful to patients’ groups because the presence of alpha 
rhythm could be used as a neurophysiological marker for the 
activity of the pineal gland and for the disorders associated 
with the absent or delayed maturation of it. 
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